Магнитные полюса Земли смещаются, поле ослабевает – какие это таит опасности. Загадка Земли: северный магнитный полюс находится в области географического Южного

Л. Тарасов

Фрагмент из книги: Тарасов Л. В. Земной магнетизм. - Долгопрудный: ИД «Интеллект», 2012.

Наука и жизнь // Иллюстрации

Кромка шельфового ледника, носящего ныне имя Росса.

Маршрут экспедиции Амундсена 1903-1906 годов.

Путь дрейфа Южного магнитного полюса по результатам экспедиций разных лет.

Суточный путь по результатам экспедиции 1994 года, который проходит Южный магнитный полюс в спокойный день (внутренний овал) и в магнитно-активный день (внешний овал). Средняя точка находится в западной части острова Эллеф-Рингнес и имеет координаты 78°18’ с. ш. и 104°00’ з. д. Она сместилась относительно исходной точки Джеймса Росса почти на 1000 км!

Путь дрейфа магнитного полюса в Антарктиде с 1841 по 2000 год. Показаны положения Северного магнитного полюса, установленные в ходе экспедиций в 1841 году (Джеймс Росс), 1909, 1912, 1952, 2000 годах. Чёрными квадратами отмечены некоторые стационарные станции в Антарктиде.

«Наша всеобщая мать Земля - это большой магнит!» - сказал английский физик и врач Уильям Гильберт, живший в XVI веке. Четыреста с лишним лет назад он сделал правильный вывод о том, что Земля представляет собой шарообразный магнит и её магнитные полюса - это точки, где магнитная стрелка ориентируется вертикально. Но Гильберт ошибался, полагая, что магнитные полюса Земли совпадают с её географическими полюсами. Они не совпадают. Более того, если положения географических полюсов неизменны, то положения магнитных полюсов со временем изменяются.

1831 год: первое определение координат магнитного полюса в Северном полушарии

В первой половине XIX века были предприняты первые поиски магнитных полюсов на основе прямых измерений магнитного наклонения на местности. (Магнитное наклонение - угол, на который отклоняется стрелка компаса под действием магнитного поля Земли в вертикальной плоскости. - Ред.)

Английский мореплаватель Джон Росс (1777-1856) отплыл в мае 1829 года на небольшом пароходе «Виктория» от берегов Англии, направляясь к арктическому побережью Канады. Как и многие смельчаки до него, Росс надеялся найти северо-западный морской путь из Европы в Восточную Азию. Но в октябре 1830 года льды сковали «Викторию» у восточной оконечности полуострова, который Росс назвал Землёй Бутия (в честь спонсора экспедиции Феликса Бута).

Зажатая во льдах у побережья Земли Бутия «Виктория» вынуждена была задержаться здесь на зимовку. Помощником капитана в этой экспедиции был молодой племянник Джона Росса Джеймс Кларк Росс (1800-1862). В то время уже стало обычным делом брать с собой в подобные путешествия все необходимые инструменты для магнитных наблюдений, и Джеймс воспользовался этим. На протяжении долгих зимних месяцев он ходил по побережью Бутии с магнитометром и проводил магнитные наблюдения.

Он понимал, что магнитный полюс должен быть где-то поблизости - ведь магнитная стрелка неизменно показывала очень большие наклонения. Нанося на карту измеренные значения, Джеймс Кларк Росс вскоре понял, где следует искать эту уникальную точку с вертикальным направлением магнитного поля. Весной 1831 года он вместе с несколькими членами экипажа «Виктории» прошёл 200 км в сторону западного побережья Бутии и 1 июня 1831 года на мысе Аделаиды с координатами 70°05’ с. ш. и 96°47’ з. д. обнаружил, что магнитное наклонение составило 89°59’. Так впервые были определены координаты магнитного полюса в Северном полушарии - иначе говоря, координаты Южного магнитного полюса.

1841 год: первое определение координат магнитного полюса в Южном полушарии

В 1840 году повзрослевший Джеймс Кларк Росс отправился на судах «Эребус» и «Террор» в своё знаменитое путешествие к магнитному полюсу в Южном полушарии. 27 декабря корабли Росса впервые встретились с айсбергами и уже в новогоднюю ночь 1841 года пересекли Южный полярный круг. Очень скоро «Эребус» и «Террор» оказались перед паковыми льдами, растянувшимися от края до края горизонта. 5 января Росс принял смелое решение идти вперёд, прямо на льды, и углубиться настолько, насколько это окажется возможным. И уже через несколько часов такого штурма корабли неожиданно вышли в более свободное ото льда пространство: паковый лёд сменился разбросанными там и тут отдельными льдинами.

9 января утром Росс неожиданно для себя обнаружил впереди по курсу свободное ото льда море! Таково было его первое открытие в этом путешествии: он открыл море, которое впоследствии было названо его собственным именем, - море Росса. Справа по курсу обнаружилась гористая, покрытая снегом земля, которая вынуждала корабли Росса плыть на юг и которая, казалось, не собиралась кончаться. Плывя вдоль берега, Росс, конечно, не упускал возможности открывать самые южные земли во славу Британского королевства; так была открыта Земля Королевы Виктории. В то же время его беспокоило, что на пути к магнитному полюсу берег может стать непреодолимым препятствием.

Между тем поведение компаса становилось всё более странным. Росс, обладавший богатым опытом магнитометрических измерений, понимал, что до магнитного полюса осталось не более 800 км. Так близко к нему ещё никто не приближался. Вскоре стало ясно, что Росс опасался не зря: магнитный полюс явно находился где-то справа, а берег упорно направлял корабли всё дальше и дальше на юг.

Пока путь был открыт, Росс не сдавался. Ему было важно собрать, по крайней мере, как можно больше магнитометрических данных в разных точках побережья Земли Виктории. 28 января экспедицию ожидал самый удивительный сюрприз за всё время путешествия: на горизонте вырос огромный проснувшийся вулкан. Над ним висело тёмное облако дыма, окрашиваемого огнём, который столбом вырывался из жерла. Этому вулкану Росс дал имя Эребус, а соседнему - потухшему и несколько меньшему - дал имя Террор.

Росс попытался идти ещё дальше на юг, но очень скоро перед его глазами возникла совершенно невообразимая картина: вдоль всего горизонта, куда хватает глаз, простиралась белая полоса, которая по мере приближения к ней становилась всё выше и выше! Когда корабли подошли поближе, стало ясно, что перед ними справа и слева огромная бесконечная ледяная стена 50-метровой высоты, совершенно плоская сверху, без каких-либо трещин на обращённой к морю стороне. Это была кромка шельфового ледника, носящего ныне имя Росса.

В середине февраля 1841 года после 300-километрового плавания вдоль ледяной стены Росс принял решение прекратить дальнейшие попытки найти лазейку. С этого момента впереди оставалась лишь дорога домой.

Экспедицию Росса никак нельзя считать неудачной. Ведь ему удалось измерить магнитное наклонение в очень многих точках вокруг побережья Земли Виктории и установить тем самым положение магнитного полюса с высокой точностью. Росс указал такие координаты магнитного полюса: 75°05’ ю. ш., 154°08’ в. д. Минимальное расстояние, отделявшее корабли его экспедиции от этой точки, составляло всего 250 км. Именно измерения Росса нужно считать первым достоверным определением координат магнитного полюса в Антарктиде (Северного магнитного полюса).

Координаты магнитного полюса в Северном полушарии в 1904 году

Прошло 73 года с момента определения Джеймсом Россом координат магнитного полюса в Северном полушарии, и вот теперь поиск магнитного полюса в этом полушарии предпринял знаменитый норвежский полярный исследователь Руаль Амундсен (1872-1928). Впрочем, поиск магнитного полюса не был единственной целью экспедиции Амундсена. Главной целью было открытие северо-западного морского пути из Атлантического океана в Тихий. И он достиг этой цели - совершил в 1903-1906 годах плавание из Осло, мимо берегов Гренландии и Северной Канады до Аляски на небольшом промысловом судне «Йоа».

Впоследствии Амундсен писал: «Я хотел, чтобы моя детская мечта о северо-западном морском пути соединилась в этой экспедиции с другой, гораздо более важной научной целью: нахождением нынешнего местоположения магнитного полюса».

Он подошёл к этой научной задаче со всей серьёзностью и тщательно подготовился к её выполнению: изучал теорию геомагнетизма у ведущих специалистов Германии; там же приобрёл магнитометрические приборы. Практикуясь в работе с ними, Амундсен летом 1902 года объездил всю Норвегию.

К началу первой зимы своего путешествия, в 1903 году, Амундсен достиг острова Кинг-Уильям, который находился совсем недалеко от магнитного полюса. Магнитное наклонение здесь составляло 89°24’.

Решив провести зимовку на острове, Амундсен одновременно создал здесь настоящую геомагнитную обсерваторию, которая выполняла непрерывные наблюдения в течение многих месяцев.

Весна 1904 года была посвящена наблюдениям «в поле» с целью определения координат полюса настолько точно, насколько это было возможно. Амундсен достиг успеха и обнаружил, что положение магнитного полюса заметно сместилось к северу по отношению к той точке, в которой его нашла экспедиция Джеймса Росса. Оказалось, что с 1831 по 1904 год магнитный полюс переместился на 46 км к северу.

Забегая вперёд, заметим, что есть данные о том, что за этот 73-летний период магнитный полюс не просто немного переехал на север, а скорее описал небольшую петлю. Где-то к 1850 году он сначала прекратил своё движение с северо-запада на юго-восток и лишь потом начал новое путешествие на север, продолжающееся и сегодня.

Дрейф магнитного полюса в Северном полушарии с 1831 по 1994 год

В следующий раз местоположение магнитного полюса в Северном полушарии было определено в 1948 году. Многомесячная экспедиция в канадские фьорды не понадобилась: ведь теперь до места можно было добраться всего за несколько часов - по воздуху. На этот раз магнитный полюс в Северном полушарии был обнаружен на берегу озера Аллен на острове Принца Уэльского. Максимальное наклонение составляло здесь 89°56’. Оказалось, что со времён Амундсена, то есть с 1904 года, полюс «уехал» к северу на целых 400 км.

С тех пор точное местоположение магнитного полюса в Северном полушарии (Южного магнитного полюса) определялось канадскими магнитологами регулярно с периодичностью около 10 лет. Последующие экспедиции состоялись в 1962, 1973, 1984, 1994 годах.

Неподалёку от точки пребывания магнитного полюса в 1962 году, на острове Корнуоллис, в местечке Резолют-Бей (74°42’ с. ш., 94°54’ з. д.), была построена геомагнитная обсерватория. В наше время путешествие на Южный магнитный полюс - это всего лишь достаточно короткая прогулка на вертолёте от Резолют-Бей. Неудивительно, что с развитием средств сообщения в XX столетии этот удалённый городок на севере Канады всё чаще и чаще стали посещать туристы.

Обратим внимание на то, что, говоря о магнитных полюсах Земли, мы на самом деле говорим о неких усреднённых точках. Ещё со времени экспедиции Амундсена стало ясно, что даже на протяжении одних суток магнитный полюс не стоит на месте, а совершает небольшие «прогулки» вокруг некоторой средней точки.

Причина таких перемещений, конечно, Солнце. Потоки заряженных частиц от нашего светила (солнечный ветер) входят в магнитосферу Земли и порождают в земной ионосфере электрические токи. Те, в свою очередь, порождают вторичные магнитные поля, которые возмущают геомагнитное поле. В результате этих возмущений магнитные полюса и вынуждены совершать свои ежесуточные прогулки. Их амплитуда и скорость, естественно, зависят от силы возмущений.

Маршрут таких прогулок близок к эллипсу, причём полюс в Северном полушарии совершает обход по часовой стрелке, а в Южном полушарии - против. Последний даже в дни магнитных бурь уходит от средней точки не более чем на 30 км. Полюс же в Северном полушарии в такие дни может уйти от средней точки на 60-70 км. В спокойные дни размеры суточных эллипсов для обоих полюсов существенно сокращаются.

Дрейф магнитного полюса в Южном полушарии с 1841 по 2000 год

Следует отметить, что исторически с измерением координат магнитного полюса в Южном полушарии (Северного магнитного полюса) дело всегда обстояло достаточно сложно. Во многом виновата его труднодоступность. Если от Резолют-Бей до магнитного полюса в Северном полушарии можно добраться на маленьком аэроплане или вертолёте за несколько часов, то от южной оконечности Новой Зеландии до побережья Антарктиды надо лететь более 2000 км над океаном. А после этого нужно проводить исследования в тяжёлых условиях ледового континента. Чтобы должным образом оценить труднодоступность Северного магнитного полюса, вернёмся в самое начало XX столетия.

Довольно долго после Джеймса Росса никто не осмеливался в поисках Северного магнитного полюса уходить в глубь Земли Виктории. Первыми это сделали члены экспедиции английского полярного исследователя Эрнеста Генри Шеклтона (1874-1922) во время его путешествия в 1907-1909 годах на старом китобойном судне «Нимрод».

16 января 1908 года судно вошло в море Росса. Слишком толстые паковые льды у побережья Земли Виктории долго не давали возможности найти подход к берегу. Лишь 12 февраля удалось перенести на берег необходимые вещи и магнитометрическое оборудование, после чего «Нимрод» взял курс обратно на Новую Зеландию.

Оставшимся на берегу полярникам потребовалось несколько недель, чтобы соорудить более или менее приемлемые жилища. Пятнадцать смельчаков учились есть, спать, общаться, работать и вообще жить в невероятно тяжёлых условиях. Впереди была долгая полярная зима. Всю зиму (в Южном полушарии она наступает одновременно с нашим летом) члены экспедиции занимались научными исследованиями: метеорологией, геологией, измерением атмосферного электричества, изучением моря через трещины во льду и самих льдов. Конечно, к весне люди уже оказались достаточно вымотанными, хотя главные цели экспедиции были ещё впереди.

29 октября 1908 года одна группа во главе с самим Шеклтоном отправилась в запланированную экспедицию к Южному географическому полюсу. Правда, экспедиция так и не смогла до него дойти. 9 января 1909 года всего в 180 км от Южного географического полюса ради спасения голодных и измученных людей Шеклтон принимает решение оставить флаг экспедиции здесь и повернуть группу обратно.

Вторая группа полярников во главе с австралийским геологом Эджвортом Дэвидом (1858-1934) независимо от группы Шеклтона отправилась в путешествие к магнитному полюсу. Их было трое: Дэвид, Моусон и Маккей. В отличие от первой группы они не имели опыта полярных исследований. Выйдя 25 сентября, они уже к началу ноября выбились из графика и из-за перерасхода пищи вынуждены были сесть на строгий паёк. Антарктида преподавала им суровые уроки. Голодные и обессиленные, они проваливались почти в каждую расселину во льду.

11 декабря едва не погиб Моусон. Он провалился в одну из бесчисленных расселин, и только надёжная верёвка спасла жизнь исследователю. Несколько дней спустя в расселину провалились 300-килограммовые сани, едва не утянувшие за собой трёх обессилевших от голода людей. К 24 декабря серьёзно ухудшилось состояние здоровья полярников, они страдали одновременно и от обморожения, и от солнечных ожогов; у Маккея к тому же развилась снежная слепота.

Но 15 января 1909 года они всё-таки достигли своей цели. Компас Моусона показал отклонение магнитного поля от вертикали всего в пределах 15’. Оставив почти всю поклажу на месте, они одним броском в 40 км достигли магнитного полюса. Магнитный полюс в Южном полушарии Земли (Северный магнитный полюс) был покорён. Водрузив на полюсе британский флаг и сфотографировавшись, путешественники трижды прокричали «ура!» королю Эдуарду VII и объявили эту землю собственностью британской короны.

Теперь им предстояло только одно - остаться в живых. По расчётам полярников, для того, чтобы поспеть к отходу «Нимрода» 1 февраля, они должны были проходить по 17 миль в сутки. Но они всё равно опоздали на четыре дня. К счастью, «Нимрод» сам задержался. Так что вскоре трое отважных исследователей наслаждались горячим ужином на борту корабля.

Итак, Дэвид, Моусон и Маккей были первыми людьми, ступившими на магнитный полюс в Южном полушарии, который в тот день оказался в точке с координатами 72°25’ ю. ш., 155°16’ в. д. (в 300 км от точки, измеренной в своё время Россом).

Понятно, что ни о какой-либо серьёзной измерительной работе здесь даже не было и речи. Вертикальное наклонение поля было зафиксировано лишь однажды, и это послужило сигналом не к дальнейшим измерениям, а лишь к скорейшему возвращению на берег, где экспедицию ожидали тёплые каюты «Нимрода». Такую работу по определению координат магнитного полюса нельзя даже близко сравнить с работой геофизиков в арктической Канаде, по нескольку дней ведущих магнитные съёмки из нескольких точек, окружающих полюс.

Однако последняя экспедиция (экспедиция 2000 года) была проведена на достаточно высоком уровне. Поскольку Северный магнитный полюс уже давно сошёл с материка и находился в океане, эта экспедиция проводилась на специально оборудованном судне.

Измерения показали, что в декабре 2000 года Северный магнитный полюс находился напротив побережья Земли Адели в точке с координатами 64°40’ ю. ш. и 138°07’ в. д.

Информация о книгах Издательского дома «Интеллект» - на сайте www.id-intellect.ru

Магнитные полюса Земли

Вы берёте в руки компас, оттягиваете на себя рычажок, чтобы магнитная стрелка опустилась на остриё иголки. Когда стрелка успокоится, попробуйте расположить её в ином направлении. А вас ничего не получиться. Сколько бы вы ни отклоняли стрелку от её первоначального положения, она, после того как успокоиться вс6егда одними концом будет показывать на север, другим – на юг.

Какая же сила заставляет стрелку компаса упрямо возвращаться в первоначальное положение? Каждый задает себе подобный вопрос, глядя на слегка колеблющуюся, будто живую, магнитную стрелку.

Из истории открытий

Вначале люди считали, что такой силой является магнитное притяжение Полярной звезды. Впоследствии было установлено, что стрелкой компаса управляет Земля, так как планета наша является огромным магнитом.

Но магнитная стрелка не всегда точно направлена по линии север - юг, а имеет отклонение от этого направления. Это отклонение называется магнитным склонением.

Знакомство человека с удивительными свойствами земного магнетизма состоялось еще на заре исторического времени. Уже в античную эпоху людям был известен магнитный железняк - магнетит. А вот кто и когда определил, что природные магниты всегда ориентируются одинаково в пространстве по отношению к географическим полюсам Земли, точно неизвестно. В китайских трактатах, датированных Х11 веком до н. э., встречаются фрагменты, которые можно истолковать как свидетельства применения компаса для целей навигации. Первые из известных описаний компаса появились в Китае лишь спустя 23 столетия - в ХI, а в Европе еще позже - в ХII веке. Первым же достоверным сообщением о магнитном компасе, появившемся в Европе, мы обязаны английскому монаху Александру Некэму. Он около 1187 года описал устройство, состоящее из стрелки, указывающей направление, причем в его компасе стрелка плавала, а не была подвешена на нити. Еще одной важной вехой в истории тгеомагнетизма является письмо, написанное в 1269 году Пьером де Мерикуром. В этом послании, в частности, говорилось, что природный магнит имеет два полюса и что полюсы эти стремятся установиться вдоль географического меридиана, указывая на полюса 3емли - северный и южный.

Имеются некоторые сведения о том, что уже X. Колумб знал, что стрелка компаса отклоняется от географического меридиана и что это отклонение неодинаково в различных частях Земли.

«...В сентябре 1492 года на набережной собралось множество испанцев. Взоры их были устремлены в море, где на волнах покачивались три судна. Этим судам предстояло необычное плавание: пересечь почти совершенно не известный дотоле океан и достичь сказочной Индии...

Корабли отчалили. Родной испанский берег с каждым часом становился все дальше и дальше.

13 сентября моряки с изумлением обнаружили, что стрелка компаса изменила свое направление, отклонившись к западу. На следующий день снова было замечено отклонение. Штурман доложил X. Колумбу, что стрелка корабельного компаса за четыре дня отклонилась от положенного ей направления на 11 градусов.

Сидя в своей каюте, Колумб долго думал. Он никак не мог объяснить такое поведение стрелки компаса. Может быть, повернуть назад? Но там, в Испании, его ждет позор, а впереди, если он откроет новые земли, его ожидают слава, почести. И Колумб решил продолжать путь. Чтобы успокоить моряков, он сказал им, что не стрелка компаса изменила свое направление, а Полярная звезда несколько сместилась со своего места. Поэтому ничего страшного нет и путешествие продолжается.

Моряки успокоились, и вскоре корабли достигли Нового Света.»

Отклонение магнитной стрелки компаса, обнаруженное Колумбом, послужило толчком к изучению этого явления, поскольку мореплавателям нужны были точные сведения о величине магнитного склонения в различных районах нашей планеты. С этого времени начинают определять склонения в разных местах Земли и на основании этих данных создавать магнитные карты, на которых показывают, в каком направлении отклоняется в данном месте магнитная стрелка компаса и на сколько градусов.

В 1544 году Гартман, пастор из Нюрнберга, установил, что направление на географический и на магнитный полюсы отличаются, причем угол между этими направлениями (склонение) зависит от координат места наблюдений. Следующий важнейший шаг сделал Роберт Норман, открывший еще один параметр геомагнитного поля, а именно - наклонение. Норман обнаружил, что свободно подвешенная стрелка магнита не только устанавливается по направлению магнитных полюсов, но и наклоняется по отношению к горизонтальной плоскости. Благодаря этому наблюдению Норман сделал поистине фундаментальный вывод о том, что источник силы, направляющей стрелку, расположен внутри Земли, а не во вне её.

В 1600 году Уильям Гильберт, личный врач английской императрицы Елизаветы 1, на основе своих бесконечных опытов, которым он посвятил всю жизнь, пришел к мысли о том, что большим магнитом является сама Земля. XVII столетие ознаменовалось новыми открытиями в области геомагнетизма. И самым замечательным из них можно считать открытие явления «векового хода». Эдмунд Галлей, королевский астроном при Английском дворе, произведя многочисленные повторные измерения склонения как в Лондоне, так и в других пунктах, доказал, что оно подвержено систематическим закономерным изменениям. В XVIII - ХIХ веках проблемами геомагнетизма занимались такие выдающиеся ученые энциклопедисты, как Гумбольдт, Гей-Люссак, Максвелл и Гаусс. Среди проектов, организованных Гауссом и Гумбольдтом, был, в частности, беспрецедентный по масштабам в истории геомагнетизма «Геттингенский союз». В рамках этого проекта в 50 точках земного шара на протяжении 5 лет (с 1836 по 1841 год) в течение 28 интервалов времени проводились одновременные измерения геомагнитного поля.

В начале ХХ века, в 1909 году, на воду была спущена плавучая магнитная лаборатория - яхта «Карнеги», принадлежавшая Отделу земного магнетизма Института Карнеги в Вашингтоне. На ней в течение почти 20 лет производились измерения магнитного поля в самых разных точках Мирового океана, а в 1953 году в свой первый рейс отправилась советская немагнитная шхуна «Заря», которая за три десятка лет постоянных экспедиций прошла все океаны, оставив за бортом 350 тысяч морских миль. В 1947 году советским физиком Я.И. Френкелем для объяснения причин возникновения магнитного поля была предложена гипотеза земного динамо, впоследствии развитая и существенно дополненная другими учеными и превратившаяся в стройную теорию происхождения геомагнитного поля. Эпохальным событием в истории магнитологии стало объяснение природы магнитныханомалий океана. Честь этого открытия принадлежит двум ученым - Д. Метьюзу и Ф. Вайну. В своей единственной совместной статье, опубликованной в 1963 году в журнале «Nature» под названием «Магнитные аномалии над океаническими хребтами», они предложили модель, которая объясняла все главные особенности океанических магнитных аномалий с необыкновенной легкостью и изяществом. Эта работа и легла в основу всех современных исследований геомагнитного поля.

Магнитные полюса – магнитосфера

По сравнению с магнитными полями, с которыми мы сталкиваемся в повседневной жизни (сердечники акустических колонок, магнитные импульсы переменного тока в бытовых приборах, лампы, линии электропередач и др.), магнитное поле Земли относится к разряду очень слабых полей. Тем не менее, это, так называемое главное геомагнитное, поле, имеющее планетарную природу, существует на земле повсеместно. Некоторые его элементы люди научились измерять еще до открытия самого магнитного поля. Так, первые карты магнитного склонения, доставлявшего столько бед морякам древности, появились еще в середине XVI века.

Осознание того факта, что магнитные полюса не совпадают с географическими, расставило все по своим местам и позволило понять, что склонение - это угол между направлением на север и магнитным меридианом, вдоль которого устанавливается стрелка компаса. Столь же давно измеряется и величина наклонения - угла между горизонтальной плоскостью и магнитной стрелкой.

Ныне магнитное поле на поверхности нашей планеты изучено достаточно подробно. Оказалось, что оно отнюдь не постоянно, а непрерывно меняется. Круглый год сотни магнитных обсерваторий, десятки специальных судов и самолетов, многочисленные отряды магнитологов в самых разных точках земного шара.

Выяснилось, что магнитное поле подвержено самым разным изменениям. Некоторые из них являются регулярными и наблюдаются ежедневно в частности так называемые суточные вариации, для которых характерны циклические колебания напряженности магнитного поля и магнитного склонения. Не менее хорошо известны и другие вариации - короткопериодические колебания, продолжительность которых не превышает нескольких минут, а также магнитные бури, чья длительность может измеряться сутками.

Все эти вариации непосредственным образом связаны с деятельностью Солнца. В «спокойные магнитные дни» взаимодействие солнечного ветра с ионосферными токами вызывает плавные, регулярные изменения компонентов магнитного поля с периодом, близким к 24 часам. Магнитные бури, упомянутые выше, - это нерегулярные спорадические возмущения магнитосферы Земли. Они начинаются в момент, когда резко изменяется давление солнечного ветра на магнитосферу и она оказывается не в состоянии «отвести» поток высокоэнергетических частиц от Земли. В результате они пронизывают ионосферу, нарушая регулярную структуру околоземных электрических токов. Магнитные бури бывают разной интенсивности и длительности, но, как правило, полное восстановление «спокойствия» геомагнитного поля происходит через 2-3 суток после начала бури.

В том случае, если скачок давления (плотность) солнечного ветра не в состоянии «пробить» магнитосферу, то искажения магнитных силовых линий носят локальный характер и магнитные возмущения охватывают не весь земной шар, а лишь какой-то отдельный район. Они очень частые «гости» в северных районах земного шара. Полярные сиянии также чаще всего связаны с этими возмущениями.

В течение года наблюдается два периода резкого повышения магнитной активности - это периоды весеннего и осеннего солнцестояния, то есть март и сентябрь. В это время количество магнитных бурь значительно возрастает. Если в среднем в месяц происходит 1-2 магнитные бури, то в марте и сентябре их число возрастает в несколько раз, причем осенний пик магнитной активности более энергичный - осенью количество магнитных бурь больше, чем весной, и может доходить до 7-8 в месяц.

Очень сильное влияние оказывает на частоту возникновения бурь глобальный 11-летний цикл солнечной активности, который во многом определяет все природные процессы на 3емле. Кстати, 2003-й был - год - максимума солнечной активности.

Помимо таких кратковременных колебаний магнитного поля существуют и гораздо более медленные, плавные изменения его параметров, с периодом в несколько сотен лет. Они связаны с процессами, происходящими внутри 3емли, и названы вековыми вариациями. Вековые вариации можно уподобить дыханию магнитного поля - в каждой точке земной поверхности периодически меняется направление магнитного поля, не остается постоянной и величина намагниченности планеты в целом. История регулярных магнитных наблюдений насчитывает немногим более 100 лет, поэтому сведения о вековых вариациях, полученные на основе этих измерений, конечно, не могли быть полными. Долгое время казалось, что любые попытки магнитологов заглянуть в отдаленное прошлое нашей планеты, выяснить, как менялось с течением времени ее магнитное поле, обречены на провал. Однако сама Природа припасла для людей замечательную подсказку, которая помогла разрешить одну из наиболее каверзных загадок эволюции 3емли.

В середине XIX века было обнаружено явление термоостаточного намагничивания лав - палеомагнетизм. Постепенно, шаг за шагом, ученные установили, что носителями древнего геомагнитного поля могут быть горные породы самого разного происхождения, как магматические, так и осадочные.

Оказалось, что излившиеся во время извержений вулканов в виде лавы горные породы обладают удивительной способностью хранить в себе информацию о магнитном поле Земли. Породы, разогретые до температуры 500-700°С, по мере остывания приобретают намагниченность, величина и направление которой соответствуют магнитному полю Земли, действовавшему на породу во время охлаждения. Эта намагниченность сохраняется в течение миллионов лет и, словно магнитофонная лента, доносит до нас свидетельства из отдаленного прошлого планеты. Определив геологическими методами возраст лавовых образований и «прочитав» хранящуюся в них палеомагнитную информацию, можно доподлинно восстановить историю магнитного поля 3емли.

Палеомагнитные исследования выявили неопровержимые свидетельства неоднократных инверсий (обращений полюсов) геомагнитного поля в прошлые эпохи. Оказалось, что магнитные полюса не раз менялись местами. Благодаря достижениям физиков, разработавших методы определения абсолютного возраста горных пород, у палеомагнитологов появилась возможность не только фиксировать главные события в истории геомагнитного поля (прежде всего инверсии), но и определить их длительность и абсолютное время начала и окончания инверсий - то есть создать шкалу времени (временную шкалу) инверсий геомагнитного поля. Магнитологи называют такую шкалу магнитохронологической.

Первая подобная шкала была довольно «куцей» - охватывала период лишь в 3,5 млн. лет и не отличалась большой детальностью. Дело в том, что лавы в большинстве своем извергались только в определенные тектономагматические эпохи, в сравнительно узком.

временном интервале. А потому стало ясно, что, исследуя лишь лавы вулканических извержений, «прочесть» всю историю магнитного поля 3емли не удастся.

Ситуация изменилась радикальным образом, как только начались масштабные исследования магнитного поля океанов. Первые же непрерывные измерения вдоль линий, пересекающих Атлантический океан, выявили резкие отличии в строении магнитного поля океана по сравнению с сушей. Результат оказался поистине сенсационным. Выяснилось, что вместо сложной формы магнитных аномалий на суше, которая сильно меняется от района к району, океанические магнитные аномалии во всех океанах имеют регулярный, систематический характер.

Магнитное поле Мирового океана представляет собой параллельные полосы с чередующимся направлением намагниченности горных пород - оно попеременно то совпадает с направлением современного магнитного поля (прямая намагниченность), то прямо ему противоположно (обратная намагниченность). Эти аномалии протягиваются на тысячи километров, иногда без всяких искажений. Например, в Атлантическом океане они прослеживаются от Исландии до мыса Горн.

Океанические аномалии имеют большую интенсивность и огромные размеры. Но, пожалуй, наиболее поразительной чертой этих магнитных полос является их зеркальная симметрии относительно срединно-океанического хребта, то есть любая положительная или отрицательная аномалии с одной стороны хребта обязательно имеет своего «близнеца» - с другой. Причем расположены аномалии-«близнецы» от оси хребта на одинаковом расстоянии.

Геофизики-магниторазведчики, привыкшие объяснить аномалии магнитного поля особенностями геологического строения и вещественного состава горных пород в районе исследований, были в недоумении: привычные, хорошо разработанные для суши модели и схемы приложительно к океану не «работали». Впрочем, объяснения этого феномена не заставили себя ждать - произошедшая в геологии революция возвела на пьедестал наук о 3емле глобальную тектонику литосферных плит. Она и преподнесла магнитологам поистине бесценный дар - возможность исследовать историю геомагнитного поля за все время существования океанов.

Совместными усилиями палеомагнитологов и морских магнитометристов была создана детальнейшая магнитохронологическая шкала - история инверсий геомагнитного поля за 4 миллиарда лет. Причем достаточно просто беглого взгляда на эту шкалу для того, чтобы заметить, что жизнь магнитного поля Земли - достаточно бурная.

Магнитные полюса нашей планеты время от времени меняются местами - происходит инверсия магнитного поля. Южный магнитный полюс становится Северным, и наоборот. В такие периоды направление магнитного поля оказывается противоположным современному. Процесс «ротации» полюсов занимает не менее 10 тысяч лет. И несмотря на огромные достижения магнитологии и геофизики последних десятилетий, причины подобных трансформаций все еще остаются загадкой.

Впрочем, систематические детальные исследования инверсий позволили высказать предположение о том, что, возможно, существует связь между периодической сменой растительного и животного мира на Земле и циклическими изменениями магнитного поля. Многие исследователи считают, что в период смены полярности магнитное поле весьма существенно ослабевает или даже исчезает вовсе, а 3емля в это время остается беззащитной перед потоками космического излучения, которое оказывает колоссальное влияние на биосферу планеты. Наиболее же смелые гипотезы связывают со сменой полярности магнитных полюсов даже появление человека.

Насколько справедливы те или иные предположения, говорить пока преждевременно. Несомненно, одно - само существование жизни на нашей планете невозможно без магнитного поля, защищающего все живое от губительного воздействия космических излучений.

Внешнее магнитное поле Земли - магнитосфера - распространяется в космическом пространстве более чем на 20 земных диаметров и надежно ограждает нашу планету от мощного потока космических частиц.

СТРОЕНИЕ МАГНИТОСФЕРЫ: солнечный ветер, фронт ударной волны, межпланетное магнитное поле, хвостовая часть магнитосферы, магнитопауза (граница магнитосферы), ночная сторона магнитопаузы, дневная сторона магнитопаузы, точка пересечения силовых линий, ионосфера, захваченные силовыми линиями частицы, сфера плазмы, овал полярных сияний.

Наиболее же ярким проявлением магнитосферы являются магнитные бури - быстрые хаотические колебания всех компонентов геомагнитного поля. Зачастую магнитные бури захватывают весь земной шар: они регистрируются всеми магнитными обсерваториями мира - от Антарктиды до Шпицбергена, причем вид магнитограмм, полученных в самых отдаленных точках Земли, удивительно схож. Поэтому не случайно такие магнитные бури называют глобальными.

Амплитуда колебаний магнитного поля во время бури в сотни, а то и в тысячи раз превышает уровень колебаний в «спокойные» дни, однако по отношению к главному (внутреннему) магнитному полю Земли они обычно увеличиваются не более чем на 1-3%. Внешнее магнитное поле - это поле токов, текущих в ионосфере - внешней оболочке атмосферы Земли, расположенной примерно на расстоянии от 100 до 600 км от ее поверхности. Эта оболочка насыщена частично ионизированным газом - плазмой, которая пронизывается геомагнитным полем. Вращение Земли неизбежно приводит к вращению ее газовых внешних оболочек, которые, помимо земного тяготения, испытывают давление солнечного ветра.

Магнитные бури

Магнитные бури оказывают сильное влияние на радиосвязь, на линии электросвязи и на силовые электроустановки. Так, во время сильной магнитной бури 11 февраля 1958 года, охватившей весь земной шар, во многих местах отмечалось прекращение радиосвязи.

Электрические токи, вызванные в Земле магнитной бурей, в Швеции были так велики, что загорался электроизоляционный материал на кабелях, сгорали предохранители, трансформаторы, прерывалась сигнализация на железных дорогах.

Почему происходят магнитные бури?

Почему происходят магнитные бури? Оказывается, в этом виновато Солнце, точнее, процессы, происходящие на этой, самой близкой к нам звезде.

Установлено, что, когда на Земле совершаются магнитные бури, на Солнце наблюдаются пятна, происходят исключительно сильные взрывы.

В том, что стрелка компаса колеблется, не всегда виновато Солнце. Есть места на земном шаре, где на стрелку оказывают влияние горные породы.

Известно, что все горные породы обладают магнитными свойствами. Но среди них изверженные кристаллические породы наиболее магнитны.

Поэтому там, где на глубине залегают кристаллические породы определенного состава, наблюдаются магнитные аномалии. В таких местах Земли стрелка компаса, вместо того чтобы указывать на север, может повернуться на запад, на восток или даже на юг.

Наиболее сильные магнитные аномалии бывают в районах, где на глубине залегают железорудные породы. Вот почему геологи уже давно ведут поиски полезных ископаемых с помощью компаса. Так, например, было открыто крупнейшее в мире месторождение железной руды - Курская магнитная аномалия, а также Соколовско-Сарбайское железорудное месторождение в Казахстане.

В последнее время ученые пришли к выводу, что магнитные свойства Земли оказывают влияние не только на магнитную стрелку компаса, но и на живые организмы.

Оказываемое влияние магнитного свойства Земли на живые организмы

Тот из вас, кто разводит рыбок в аквариуме, знает, что их можно приучить к тому, чтобы, после того как вы постучите по стеклу аквариума» он» подплывали к определенному месту, где им, обычно дают корм. Постукивание можно заменить зажиганием лампочки и, как это недавно выяснилось, магнитом. Оказывается, рыбки чувствуют его действие.

Еще более чувствителен человек, а также животные к процессам, происходящим периодически на Солнце (сильные взрывы, появление пятен). Процессы эти, как вы теперь знаете, вызываются магнитными бурями.

Ученые уже давно приметили, что бурная активность Солнца наступает примерно через 11 лет. Они также заметили одиннадцатилетний период в жизни некоторых организмов. Так, например, если внимательно рассмотреть годовые кольца на спиле старого дерева, можно заметить, что толщина этих колец неодинакова. Повторяемость более широких и более узких колец имеет определенную закономерность - она отражает одиннадцатилетний цикл солнечной активности.

Собран огромный материал о повторяемости массовых заболеваний среди людей и животных. И опять же установлена взаимосвязь между эпидемиями и изменением солнечной активности. Так, грипп «наступает» в годы максимумов солнечной активности, а ящур, этот бич животноводства, наоборот, в годы малой активности Солнца.

Очень интересные данные получены в отношении дифтерии. Отмечено, что болезнь давала вспышки в годы минимума солнечной активности.

В период беспокойного Солнца усиливается рост деревьев, катастрофически размножаются или неожиданно пропадают полчища насекомых - вредителей сельского хозяйства.

Может показаться удивительным, но число автомобильных катастроф, согласно статистике, как правило, возрастает - и нередко в четыре раза!-на второй день после... вспышек на Солнце. С помощью специальных приборов было замечено, что во время вспышек на Солнце у людей замедляется реакция на сигналы, и притом в несколько раз по сравнению с днями спокойного Солнца.

В некоторых странах, в том числе и в Советском Союзе, организована специальная служба Солнца. Так, например, на некоторых пляжах установлены магнитографы, регистрирующие колебания земного магнетизма. Когда портится погода на Солнце, люди без прибора этого не замечают! море по-прежнему сверкает и переливается в солнечных лучах и на небе ни тучки. А магнитограф сообщает: на Солнце происходят возмущения. Врачи, узнав об этом, успевают вовремя защитить от солнечной непогоды своих пациентов.

Заключение

Многие спрашивают: а не устарел ли в наше время магнитный компас? Ведь сейчас у штурманов есть такие точные приборы, как гирокомпас и разнообразные радиолокационные устройства. Да, кроме того, на кораблях, сделанных из ме­талла, магнитная стрелка едва ли покажет правильное на­правление. Ведь известно, что - любая железная вещь значительно отклоняет; стрелку.

И все-таки маленькая подвижная стрелка служит людям и сейчас. На любом современном корабле обязательно устанавливают один или два магнитных компаса. Кроме компаса, турман имеет карту, на которой указана величина магнитного склонения для каждого пункта.

Зная величину магнитного склонения и имея показания корабельного компаса, штурман вводит в них поправку и определяет истинный курс корабля. Например, в Балтийском море магнитное склонение равно 4-6 градусов, склонение восточное. Значит, стрелка компаса от истинного направления север - юг отклонена к востоку на 6 градусов. Чтобы определить истинный курс корабля, нужно показание компаса исправить на 6 градусов.

Наши ученые нашли способ, как избавиться от отклонения стрелки компаса под воздействием железных предметов, находящихся на корабле (такое отклонение называется девиацией). Для этого вокруг компаса в определенном порядке располагают специальные магниты и железные предметы.

Благодаря науке о девиации магнитный компас остался верным помощником моряков и на железных кораблях.

В XX веке с появлением авиации возникла необходимость применения магнитного компаса на самолетах. При этом уничтожение девиации компаса на самолетах производится так же, как и на кораблях.

Интересно отметить, что не только человек использует силу земного магнетизма (например, для навигации). Есть некоторые основания считать, что птицы, удивляющие нас способностью при своих перелетах находить места, в которых они когда-то родились и жили, также используют эти силы.

Не так давно были проведены интересные опыты с почтовыми голубями, которые, как известно, отличаются способностью определять свое постоянное местонахождение. Пять голубей были увезены далеко от города, в котором они находились. Выпущенные на волю, птицы безошибочно возвратились обратно. Затем каждому голубю под крылья привязались вый маленький магнит и повторили опыт. Оказалось, что только один голубь из пяти возвратился домой, и то после долгого блуждания в пути.

МАГНИТНОЕ ПОЛЕ. ЭЛЕКТРОМАГНИТЫ. ПОСТОЯННЫЕ МАГНИТЫ. МАГНИТНОЕ ПОЛЕ ЗЕМЛИ

Вариант 1

I (1) Когда электрические заряды находятся в покое, то вокруг них обнаруживается...

1. электрическое поле.

2. магнитное поле.

3. электрическое и магнитное поля.

II (1) Как располагаются железные опилки в магнитном поле прямого тока?

1. Беспорядочно.

2. По прямым линиям вдоль проводника.

3. По замкнутым кривым, охватывающим проводник.

III (1) Какие металлы сильно притягиваются магнитом? 1. Чугун. 2. Никель. 3. Кобальт. 4. Сталь.

IV (1) Когда к магнитной стрелке поднесли один из полюсов постоянного магнита, то южный полюс стрелки оттолкнул­ся. Какой полюс поднесли?

1. Северный. 2. Южный.

V (1)-Стальной магнит ломают пополам. Будут ли обладать магнитными свойствами концы А и В на месте излома магнита (рис. 180)?

1. Концы А и В магнитными свойствами обладать не будут.

2. Конец А В - южным.

3. Конец В станет северным магнитным полюсом, а А - южным.

VI (1) К одноименным магнитным полюсам подносят стальные булавки. Как расположатся булавки, если их отпустить (рис. 181)?

1. Будут висеть отвесно. 2. Головки притянутся друг к другу. 3. Головки оттолкнутся друг от друга.

VII (1) Как направлены магнитные линии между полюсами дуго­образного магнита (рис. 182)?

1. От А к Б. 2. От Б к А.

VIII (1) Одноименными или разноименными полюсами образован магнитный спектр (рис. 183)?

1. Одноименными. 2. Разноименными.

IX (1) Какие магнитные полюсы изображены на рисунке 184?

1. А - северный, В - южный.

2. А - южный, В - северный.

3. Л - северный, В - северный.

4. Л - южный, В - южный.

Х (1) Северный магнитный полюс расположен у... географического полюса, а южный - у...

1. южного... северного. 2. северного... южного.

I (1) К источнику тока с помощью проводов присоединили металлический стержень (рис. 185). Какие поля образуются вокруг стержня, когда в нем возникнет ток?

1. Одно лишь электрическое поле.

2. Одно лишь магнитное поле.

3. Электрическое и магнитное поля.

II (1) Что представляют собой магнитные линии магнитного поля тока?

1. Замкнутые кривые, охватывающие проводник.

2. Кривые, расположенные около проводника.

3. Окружности.

III (1) Какое вещество из перечисленных ниже слабо притяги­вается магнитом?

1. Бумага. 2. Сталь. 3. Никель. 4. Чугун.

IV (1) Разноименные магнитные полюсы..., а одноименные-...

1. притягиваются... отталкиваются.

2. отталкиваются... притягиваются.

V (1) Лезвием бритвы (концом А) "прикоснулись к северному магнитному полюсу магнита. Будут ли после этого обладать магнитными свойствами концы лезвия (рис. 186)?

1. Не будут.

2. Конец А станет северным магнитным полюсом, а В - южным.

3. Конец В станет северным магнитным полюсом, а А - южным.

VI (1) Магнит, подвешенный на нити, устанавливается в направлении север - юг. Каким по­люсом магнит повернется к се­верному магнитному полюсу Земли?

1. Северным. 2. Южным.

VII (1) Как направлены магнитные ли­нии между полюсами магнита, изображенного на рисунке 187?

1. От А к В. 2. От В к А.

VIII (1) К концу стального стержня притягиваются северный и юж­ный полюсы магнитной стрел­ки. Намагничен ли стержень?

1. Намагничен, иначе стрелка не притянулась бы.

2. Определенно сказать не­льзя.

3. Стержень не намагничен. К намагниченному стержню притягивался бы только один полюс.

IX (1) У магнитных полюсов расположена магнитная стрелка

(рис. 188). Какой из этих полюсов северный и какой южный?

1. А - северный, В - южный.

2. А - южный, В - северный.

3. А - северный, В - северный.

4. А - южный, В - южный.

X (1) Все стальные и железные предметы намагничиваются в магнитном поле Земли. Какие магнитные полюсы имеет стальной кожух печи в верх­ней и нижней части в северном полушарии Земли (рис. 189)?

1. Сверху-северный, "внизу- южный.

2. Сверху - южный, внизу - северный.

3. Сверху и снизу - южные полюсы.

4. Сверху и снизу - северные полюсы.

ВариантЗ

I (1) Когда электрические заряды движутся, то вокруг них суще­ствует (ют)...

1. электрическое поле.

2. магнитное поле.

3. электрическое и маг­нитное поля.

II (1) Каким способом можно усилить магнитное по­ле катушки?

1. Сделать катушку большего диаметра.

2. Внутрь катушки вставить железный сердечник.

3. Увеличить силу тока в катушке.

III (1) Какие вещества из указанных ниже совсем не притяги­ваются магнитом?

1. Стекло. 2. Сталь. 3. Никель. 4. Чугун.

IV (1) Середина магнита АВ не притягивает к себе железных опилок (рис. 190). Магнит ломают на две части по линии АВ, Будут ли концы АВ на месте излома магнита притягивать железные опилки?

1. Будут, но очень слабо.

2. Не будут.

3. Будут, так как образуется магнит с южным и северным полюсами.

V (1) К магнитному полюсу поднесли две булавки. Как расположатся булавки, если их отпустить (рис. 191)?

1. Будут висеть отвесно.

2. Притянутся друг к другу.

3. Оттолкнутся друг от друга

VI (1) Как направлены магнитные линии между полюсами маг­нита, изображенного на рисунке 192.

1 От А к В. 2 От В к А.

VII (1) Какими магнитными полюсами образован спектр, изображенный на рисунке 193.

1. Одноименными 2 Разноименными

VIII (1) На рисунке 194 изображен дугообразный магнит и его магнитное поле. Какой полюс северный и какой южный?

1. А - северный, В - южный.

2. А - южный, В - северный.

3. Л - северный, В - северный.

4. Л - южный, В - южный.

IX (1) Если стальной стержень расположить вдоль меридиана Земли и сделать по нему несколько ударов молотком, то он намагнитится. Какой магнитный полюс образуется на конце, обращенном к северу?

1. Северный. 2. Южный.

Вариант 4

I (1) Когда металлический стержень присоединили к одному из полюсов источника тока (рис. 195), то вокруг него обра­зовалось... поле.

1. электрическое

2. магнитное

3 электрическое и магнитное

II (1) При изменении силы тока в катушке изменяется ли маг­нитное поле?

1. Магнитное поле не изменяется.

2. При увеличении силы тока действие магнитного поля усиливается.

3. При увеличении силы тока действие магнитного поля ослабевает.

III (1) Какие вещества из указанных ниже хорошо притягивают­ся магнитом?

1 Древесина. 2. Сталь. 3. Никель. 4 Чугун

IV (1) К железному стержню поднесли магнит северным полюсом. Какой полюс образуется на противоположном конце стержня?

1. Северный. 2. Южный.

(1) Стальной магнит разломили на три части (рис. 196). Будут ли обладать магнитными свойст­вами концы A и В?

1. Не будут.

2. Конец А имеет северный магнитный полюс, В - южный.

3. Конец В имеет северный магнитный полюс.

А - южный.

VI (1) Конец лезвия перочинного ножа подносят к южному по­люсу магнитной стрелки. Этот полюс притягивается к ножу Был ли намагничен нож?



Нож был намагничен.

Конец ножа имел северный маг­нитный полюс

2 Определенно сказать нельзя.

3 Нож намагничен, поднесен южный магнитный полюс.

VII (1) В каком направлении повернется северный конец маг­нитной стрелки, если внести ее в магнитное поле, изобра­женное на рисунке 197?

1. От А кОт В к Л.

VIII (I) Какими магнитными полюсами образован спектр, изобра­женный на рисунке 198, одноименными или разноимен­ными?

1 Одноименными. 2. Разноименными. 3. Парой северных полюсов. 4. Парой южных полюсов.

IX (1) На рисунке 199 изображен полосовой магнит АВ и его магнитное поле. Какой из полюсов северный и какой южный?

1. А - северный. В - южный.

2. А - южный, В - северный.

X (1) Какой полюс магнитной стрелки притянется к верхней части школьного стального штатива в северном полуша­рии Земли. Какой полюс притянется снизу (рис. 200)?

1. Сверху притянется северный, снизу-южный.

2. Сверху притянется южный, снизу - северный.

3. Сверху и снизу притянется южный полюс магнитной стрелки.

4. Сверху и снизу притянется северный полюс магнитной стрелки.

Специалисты фиксируют, что магнитные полюса Земли смещаются с высокой нарастающей скоростью, а магнитное поле ослабевает . Какие это таит опасности, чем это явление может грозить человечеству, а может и всей природе и фауне?
Попробуем кратенько разобраться в этом вопросе, призвав в помощь отечественные и зарубежные источники. Ведь стрелка компаса указывает на север — так учат детей на уроках географии.

Было ли смещение полюсов ранее в истории Земли?

Да, было, утверждают ученые. 786000 лет назад, магнитное поле Земли изменило свое направление на 180 градусов. Разворот, по-видимому, продолжался всего сто лет, но забегая вперед, можно предполагать, что люди тогда все же могли находиться в определенной опасности.
Мало того, магнитное поле Земли неоднократно меняло направление — в среднем каждые 250000 лет. В то время, если бы был компас, то его стрелка, обозначающая север, показывала бы на самом деле юг.

Последний долгосрочный разворот магнитных полюсов, получивший название разворот Брюнес-Матуяма, произошел почти 800 тысяч лет назад. И он произошел удивительно гораздо быстрее, чем ранее известные переполюсовки магнитного поля Земли, сообщают в «Международном геофизическом журнале».
Почти так же быстро происходило краткое изменение магнитного поля 41000 лет назад. В то время, северный магнитный полюс шел 200 лет к Южному полюсу, остался там на 440 лет, а затем вернулся на север. Такие краткосрочные экскурсии совершаются даже чаще, чем долгосрочные развороты.

Точная дата последнего долгосрочного разворота магнитных полюсов

Чтобы проанализировать смещение магнитных полюсов, ученые проанализировали отложения бывшего озера в Апеннинах востоку от Рима. Были найдены и восстановлены доминирующие направления магнитного поля их материалов отложений. В этом исследовании, ученые смогли определить и время разворота Брюнес — Матуяма намного точнее, чем это было возможно ранее. Отношение двух разных изотопа аргона использовали для вычисления возраста нанесенных слоев. Получилось, что это событие произошло всего 786 тысяч лет назад.

Почему магнитное поле Земли меняет свое направление, исследователи не могут окончательно объяснить до сих пор. «Это связано с изменениями во внешнем ядре планеты,» говорит Максвелл Браун из Немецкого исследовательского центра наук о Земле в Потсдаме. Там, вероятно, и генерируется магнитное поле Земли. «Тем не менее, мы не знаем, что контролирует его долгосрочное поведение».

Однако есть и такое понимание природы магнитного поля Земли. Причины формирования магнитного поля скрыты глубоко в горячих недрах Земли: там есть слой жидкого железа, который вращается вокруг 2500 километрового мощного ядра Земли, который состоит из твердого металла – железа и никеля. Это вращение перемещает металлы на расстояния примерно десять километров в год и создает ток, который, в свою очередь, генерирует магнитное поле вокруг Земли.
«Но железо массы в недрах земли ведут себя хаотично, везде образуется небольшая турбулентность и конвекционные потоки, что проявляется на земле в виде колебаний в магнитном поле, как ослабляя еще магнитное поле, так и немного усиливая его в других местах. Так, магнитное поле уже ослабло на 5%, а в Атлантике и в Бразилии еще больше.

Есть, по крайней мере косвенные доказательства, что следующее переключение полюсов может состояться уже через несколько тысяч лет. Магнитное поле Земли слабеет уже в течение 150 лет. В последнее время снижение интенсивности поле даже ускорилось. А Северный магнитный полюс, например, прошел уже путь от первоначального значения 1300 км в направлении Сибири, преодолевая примерно 90 км в день.

Какие таит опасности, угрозы для всего живого переключение магнитного поля Земли

Для жизни на Земле, орбитальных спутников и для электрической инфраструктуры, магнитное поле Земли является чрезвычайно важным, потому что оно защищает их от вредного космического излучения. Во время разворота магнитное поле становится гораздо слабее. Снижается защита от космического излучения и это может увеличить риск рака для людей и животных. Воздействие на спутники будет происходить примерно также, как во время солнечных бурь. Эксперты опасаются сбоев в функционировании электросети.

Мало того, магнитное поле не дает уносить в космос молекулы газовой оболочки Земли, иначе бы от нее осталось бы то, что сейчас наблюдается на Марсе.

Тем не менее, геологи относятся к смене полярности полюсов спокойно, потому что атмосфера является реальным щитом против излучения высокой энергии в сторону земли. Кроме того, защитное магнитное поле не исчезает полностью даже во время разворота на обратное значение. Определенный оптимизм внушает то, что человеческий род пережил несколько краткосрочных разворотов магнитного поля, как тот, который имел место 41000 лет назад.

В настоящее время ученые приступили к интенсивным исследованиям полярного льда, который хранит вековые тайны отклика материалов на изменения магнитного поля планеты. Многие считают, что в этом вопросе у землян наблюдается просто вопиющее отсутствие знаний, которое надо быстро ликвидировать. Может и поэтому, на орбите Земли уже более одного года стали летать близко друг к другу три европейских спутника, которые своими магнетометрами ведут тщательное отслеживание изменений в магнитном поле нашей планеты. И они отметили в ряде мест снижение интенсивности ослабления поля. Правда, в других местах эти изменения несколько возросли.

Но астрофизик Харальд Леша из Мюнхена, который проводил компьютерное моделирование проблемы, дает неожиданную надежду человечеству. Он говорит, что если магнитное поле планеты сильно ослабнет, то недостающую энергию способна заместить энергия людей, обращенная к магнитному полю.

Статья полезна? Тогда сообщите о ней другим, нажав на кнопки социальных сетей (Twitter, Facebook и др.) ниже.
Скорее всего, вам будут интересны и полезны следующие записи:

,
а также пригодится подписка на новые интересные материалы сайта через оранжевую кнопку вверху или в боковой колонке страницы.
Блок 2 Реклама Google

Добавьте статью в закладки, чтобы вновь вернуться к ней, нажав кнопки Ctrl+D .Подписку на уведомления о публикации новых статей можно осуществить через форму "Подписаться на этот сайт" в боковой колонке страницы. Если что непонятно, то, читайте .

Куда бежит магнитный полюс?

Куда указывает стрелка компаса? Ответ на этот вопрос даст любой: конечно, на Северный полюс! Более осведомленный уточнит: стрелка показывает направление не на географический полюс Земли, а на магнитный, и что в реальности они не совпадают. Самый знающий добавит, что магнитный полюс вообще не имеет постоянной «прописки» на географической карте. Судя же по результатам последних исследований, полюс не только имеет природную склонность к «бродяжничеству», но в своих блужданиях по поверхности планеты иногда способен перемещаться со сверхзвуковой скоростью!

Знакомство человечества с явлением земного магнетизма, судя по письменным китайским источникам, случилось не позднее 2-3 в. до н. э. Те же китайцы, несмотря на несовершенство первых компасов, заметили и отклонение магнитной стрелки от направления на Полярную звезду, т. е. на географический полюс. В Европе с этим феноменом познакомились в эпоху Великих географических открытий, не позднее середины XV в., о чем свидетельствуют навигационные инструменты и географические карты того времени (Дьяченко, 2003).

О смещении географического положения магнитных полюсов на поверхности планеты ученые заговорили с начала прошлого века после повторных, с интервалом в год, измерениий координат истинного Северного магнитного полюса. С тех пор в научной печати достаточно регулярно появляется информация об этих «странствиях», особенно Северного магнитного полюса, который сейчас уверенно движется от островов Канадского арктического архипелага к Сибири. Раньше он перемещался со скоростью около 10 км в год, в последние же годы эта скорость возросла (Newitt et al. , 2009).

В СЕТИ ИНТЕРМАГНЕТА

Первые измерения магнитного склонения в России были проведены в 1556 г., во времена царствования Иоанна Грозного, в Архангельске, Холмогорах, в устье Печоры, на Кольском полуострове, о. Вайгач и Новой Земле. Измерение параметров магнитного поля и обновление карт магнитного склонения было настолько важным для мореплавания и других практических целей, что магнитной съемкой занимались участники многих экспедиций, мореплаватели и известные путешественники. Судя по «Каталогу магнитных измерений в СССР и сопредельных странах с 1556 по 1926 год» (1929), в их число входили такие мировые «звезды» как Амундсен, Баренц, Беринг, Борро, Врангель, Зеберг, Келль, Колчак, Кук, Крузенштерн, Седов и многие др.
Первые в мире обсерватории для исследования изменений параметров земного магнетизма были организованы в 1830-е гг., в том числе на Урале и в Сибири (в Нерчинске, Колывани и Барнауле). К сожалению, после отмены крепостного права сибирская горнорудная промышленность, а с ней и сибирская магнитометрия, пришли в упадок. Мощными стимулами к организации новых обсерваторий, а также магнитных измерений на полярных станциях, так называемых пунктах векового хода, где производятся повторные определения элементов земного магнетизма через определенные промежутки времени, а также на дрейфующем льду, стали широкомасштабные комплексные исследования в рамках Второго международного полярного года (1932–1933) и Международного геофизического года (1957–1958).
На сегодняшний день в нашей стране работает десять магнитных обсерваторий, входящих в мировую сеть магнитных обсерваторий ИНТЕРМАГНЕТ. Наиболее близко к магнитной обсерватории «Новосибирск» расположены обсерватории «Арти» (Свердловская обл.), «Диксон» (Красноярский край), «Алма-Ата» (Казахстан) и «Иркутск» (Иркутская обл.)

Но это касается изменения географического положения полюсов год от года, а насколько стабильно они ведут себя в масштабе реального времени – в течение секунд, минут, суток? Судя по наблюдениям путешественников, полярных мореплавателей и авиаторов, магнитная стрелка иногда вертится «как бешеная», поэтому устойчивость положения магнитных полюсов давно ставилась под сомнение. Однако до сих пор ученые не пытались оценить ее количественно.

В магнитных обсерваториях мира сегодня ведется непрерывная запись всех компонентов вектора магнитной индукции, которые применяют для расчета среднегодовых значений параметров магнитного поля и создания карт земного магнетизма, использующихся для выявления аномалий при проведении магниторазведочных работ. Эти же записи позволяют изучить и поведение магнитного полюса на временных интервалах меньше года.

За неземной, в прямом смысле этого слова, красотой полярного сияния стоит сильнейшее возмущение магнитного поля, сбивающее с толку компасы. «На пазорях матка дурит», – говорили в таких случаях русские поморы, связывая беспокойное поведение стрелки компаса («матки») с радужными небесными сполохами

Что же происходит с полюсом в спокойный период и во время магнитных бурь? Насколько сильно такая буря может «раскачать» магнитный диполь в центре Земли? И, наконец, насколько большую скорость способен в реальности развивать магнитный полюс?

Ответы на эти вопросы имеют не только научный, но и практический интерес. Ведь вместе со смещением магнитного полюса и расширением области его «блуждания» не только меняется область полярных сияний, но и возрастает риск возникновения аварийных ситуаций в протяженных линиях электропередач, помех в работе спутниковых навигационных систем и коротковолновой радиосвязи.

Сквозь магнитные бури

К угловым элементам земного магнетизма относятся магнитное склонение (Δ), равное углу между северным направлением истинного (географического) и магнитного меридианов, и магнитное наклонение (Ι) – угол наклона магнитной стрелки по отношению к горизонту. Склонение характеризует величину «расхождения» между географическим и магнитным азимутами, наклонение – удаленность наблюдателя от магнитного полюса. При значении Ι = 90° (когда магнитная стрелка располагается вертикально) наблюдатель находится в точке истинного магнитного полюса. В остальных случаях по значениям Δ и Ι можно рассчитать координаты виртуального магнитного полюса (ВМП), который не обязательно совпадает с истинным из-за того, что представление глобального магнитного поля Земли в виде единого диполя все-таки является неоправданно упрощенным при его детальном исследовании.

Одним из самых, на наш взгляд, эффективных и наглядных способов исследования поведения полюсов является преобразование значений элементов земного магнетизма в более «интегральные» и удобные для сопоставления характеристики – мгновенные координаты магнитных полюсов и локальную магнитную постоянную (Bauer, 1914; Kuznetsov et al. , 1990; 1997). Преимущество этого преобразования в том, что оно не требует никаких предположений об истинных источниках наблюдаемого магнитного поля, но при этом позволяет увидеть, в частности, насколько магнитные полюса могут «разбегаться и разгоняться» на коротких (меньше года) временных интервалах.

Оказалось, что даже в дни спокойного состояния магнитного поля в периоды осеннего или весеннего равноденствия виртуальный северный магнитный полюс может вообще реально не побывать в точке своего рассчитанного «среднесуточного» положения! Дело в том, что в течение светового дня полюс не остается в неподвижности, а его «траектория» напоминает овал. Например, в спокойные дни по данным магнитной обсерватории «Ключи» (Новосибирск) северный магнитный полюс описывает по часовой стрелке петлю, вытянутую примерно на 10 км в направлении с юго-востока на северо-запад.

Во время магнитной бури колебания магнитной оси Земли происходят намного сильнее, но их также нельзя назвать хаотичными. Так, 17 марта 2013 г. всего за 20-минутный интервал магнитный полюс «пробежал» по эллипсу размером более 20 км, выписывая по пути мелкие вензеля с периодом в несколько секунд. Интересно, что в отдельные периоды возмущения магнитного поля полюс может менять направление своего движения, перемещаясь против часовой стрелки.

Одна из самых мощных магнитных бурь произошла 29–31 октября 2003 г. О степени «расшатывания» магнитного диполя ядра Земли во время этой бури можно судить по траектории движения северного магнитного полюса, который совершил настоящий «вояж» по окрестным островам, неоднократно отклоняясь в разные стороны на сотни километров от своей «нормальной», среднегодовой позиции. Для сравнения ­заметим, что путь, пройденный северным магнитным полюсом, рассчитанный по среднегодовым значениям склонения и наклонения на основе данных канадской обсерватории Резольют-Бей, за последние 40 лет представляет собой линию длиной не более 500 км.

Со скоростью звука

Сегодня в мире работает более ста магнитных обсерваторий, данные измерений которых сохраняются в единой базе ИНТЕРМАГНЕТ (InteRMagNet International Real Magnetic Net ). И хотя в ней обычно представлены данные с минутным интервалом, большинство магнитных обсерваторий измеряют значения элементов земного магнетизма ежесекундно. Но даже расчеты по средним минутным значениям на основе данных обсерваторий, расположенных на разных широтах земного шара, позволяют оценить закономерности и скорости движения магнитных полюсов.

Прежде чем рассчитать скорость движения полюса за определенный период времени, требуется преобразовать величины склонения и наклонения в координаты соседних географических точек, которые за это время посещал магнитный полюс, а затем оценить общую длину соединяющей их дуги большого круга, которая и является минимальной оценкой пути, пройденного полюсом. Именно минимальной – потому что эта дуга представляет собой кратчайший путь по сфере от одной точки до другой. А общая траектория объекта нашего исследования на поверхности земного шара как во время магнитных бурь, так и в период «покоя» представляет собой не просто дугу, а набор «петель» различной формы и размеров.

Для вычисления скоростей виртуальных магнитных полюсов мы выбрали 17 марта 2013 г.: в течение этих суток наблюдалось как спокойное, так и возмущенное состояние магнитного поля. Для каждой из 1440 минут этих суток на основе минутных значений характеристик земного магнетизма был рассчитан путь, пройденный виртуальным магнитным полюсом, и определена скорость его движения.

ЗДЕСЬ БЫЛ ПОЛЮС

Научное исследование земного магнетизма началось с работы английского врача и исследователя Вильяма Гильберта, который в 1600 г. издал труд «О магните, магнитных телах и о большом магните – Земле», где высказано предположение, что наша планета представляет собой большой дипольный магнит. Идея магнитного диполя, расположенного в центре земного шара, лежит в основе современной симметричной модели магнитного поля Земли. При этом два магнитных полюса, северный и южный, являются точками, в которых продолжение оси центрального диполя пересекает земную поверхность.
Использование этой модели для расчета координат магнитных полюсов является обычным в палеомагнетизме (Merrill et al. , 1998). Поэтому магнитологи издавна используют термин «виртуальный магнитный полюс» (ВМП) в значении «фактический» или «расчетный». Географические координаты этого полюса (широта Φ и долгота Λ) рассчитывают, исходя из фактических значений магнитного склонения (Δ) и магнитного наклонения (Ι), измеренных в определенный момент времени в точке с географической широтой φ и долготой λ:
sinΦ = sinφ × cosϑ + cosφ × sinϑ × cosΔ ,
sin(Λ – λ) = sinϑ × sinΔ / cosΦ, где ctgϑ = ½ tgΙ.
Согласно этим формулам, два разноименных магнитных полюса находятся на расстоянии 180° дуги большого круга друг от друга. По мере приближения магнитного наклонения к 90° можно все более уверенно говорить о близости рассчитанной точки ВМП к истинному северному магнитному полюсу.
Как уже говорилось выше, по координатам Φ и Λ можно одновременно рассчитать положение и северного, и южного (противоположного) виртуальных магнитных полюсов. Однако в отношении истинного магнитного полюса точность такого определения координат вызывает сомнения в случае, если расчеты основываются на данных, полученных на очень большом удалении от самого этого полюса.
В действительности из-за асимметрии магнитного поля Земли истинный северный и южный магнитные полюса вовсе не являются географически противоположными точками. Поэтому противоположные виртуальные магнитные полюсы, положение которых рассчитано по данным разных обсерваторий, часто являются на самом деле полюсами двух центральных магнитных диполей разной ориентации, а наиболее достоверную информацию о положении истинных магнитных полюсов в настоящее время можно получить только в Арктике и у берегов Антарктиды

Результаты вычислений впечатлили даже опытных магнитологов: оказалось, что в отдельные моменты магнитные полюса могут перемещаться не только со скоростью автомобиля, но и реактивного самолета, превышающего скорость звука!

Интересно, что полученные оценки скоростей зависели от географического положения обсерваторий, данные которых были использованы для расчетов. Так, по данным среднеширотных и низкоширотных обсерваторий скорости движения виртуальных магнитных полюсов (как средние, так и максимальные) оказались значительно меньше, чем по данным обсерваторий, расположенных в Арктике и Антарктике. Кстати сказать, степень удаленности обсерватории от истинного магнитного полюса аналогично влияет и на суточный разброс положения виртуального магнитного полюса. Эти данные также свидетельствуют в пользу того, что наиболее точную информацию о параметрах движения истинных магнитных полюсов можно получить именно в тех районах, где эти полюсы реально «блуждают».



Поделиться: