В чем смысл теории относительности эйнштейна. Общая теория относительности

Был этот мир глубокой тьмой окутан.
Да будет свет! И вот явился Ньютон.
Эпиграмма XVIII в.

Но сатана недолго ждал реванша.
Пришел Эйнштейн - и стало все, как раньше.
Эпиграмма XX в.

Постулаты теории относительности

Постулат (аксиома) - фундаментальное утверждение, лежащее в основе теории и принимаемое без доказательств.

Первый постулат: все законы физики, описывающие любые физические явления, должны во всех инерциальных системах отсчета иметь одинаковый вид.

Этот же постулат можно сформулировать иначе: в любых инерциальных системах отсчета все физические явления при одинаковых начальных условиях протекают одинаково.

Второй постулат: во всех инерциальных системах отсчета скорость света в вакууме одинакова и не зависит от скорости движения как источника, так и приемника света. Эта скорость является предельной скоростью всех процессов и движений, сопровождаемых переносом энергии.

Закон взаимосвязи массы и энергии

Релятивистская механика - раздел механики, изучающий законы движения тел со скоростями, близкими к скорости света.

Любое тело, благодаря факту своего существования, обладает энергией, которая пропорциональна массе покоя.

Что такое теория относительности (видео)

Следствия теории относительности

Относительность одновременности. Одновременность двух событий относительна. Если события, происшедшие в разных точках, одновременны в одной инерциальной системе отсчета, то они могут быть не одновременными в других инерциальных системах отсчета.

Сокращение длины. Длина тела, измеренная в системе отсчета K", в которой оно покоится, больше длины в системе отсчета K, относительно которой K" движется со скоростью v вдоль оси Ох:


Замедление времени. Промежуток времени, измеренный часами, неподвижными в инерциальной системе отсчета K", меньше промежутка времени, измеренного в инерциальной системе отсчета K, относительно которой K" движется со скоростью v:


Теория относительности

материал из книги Стивена Хокинга и Леонарда Млодинова "Кратчайшая история времени"

Относительность

Фундаментальный постулат Эйнштейна, именуемый принципом относительности, гласит, что все законы физики должны быть одинаковыми для всех свободно движущихся наблюдателей независимо от их скорости. Если скорость света постоянная величина, то любой свободно движущийся наблюдатель должен фиксировать одно и то же значение независимо от скорости, с которой он приближается к источнику света или удаляется от него.

Требование, чтобы все наблюдатели сошлись в оценке скорости света, вынуждает изменить концепцию времени. Согласно теории относительности наблюдатель, едущий на поезде, и тот, что стоит на платформе, разойдутся в оценке расстояния, пройденного светом. А поскольку скорость есть расстояние, деленное на время, единственный способ для наблюдателей прийти к согласию относительно скорости света – это разойтись также и в оценке времени. Другими словами, теория относительности положила конец идее абсолютного времени! Оказалось, что каждый наблюдатель должен иметь свою собственную меру времени и что идентичные часы у разных наблюдателей не обязательно будут показывать одно и то же время.

Говоря, что пространство имеет три измерения, мы подразумеваем, что положение точки в нем можно передать с помощью трех чисел – координат. Если мы введем в наше описание время, то получим четырехмерное пространство-время.

Другое известное следствие теории относительности – эквивалентность массы и энергии, выраженная знаменитым уравнением Эйнштейна Е = mс2 (где Е– энергия, m – масса тела, с – скорость света). Ввиду эквивалентности энергии и массы кинетическая энергия, которой материальный объект обладает в силу своего движения, увеличивает его массу. Иными словами, объект становится труднее разгонять.

Этот эффект существенен только для тел, которые перемещаются со скоростью, близкой к скорости света. Например, при скорости, равной 10% от скорости света, масса тела будет всего на 0,5% больше, чем в состоянии покоя, а вот при скорости, составляющей 90% от скорости света, масса уже более чем вдвое превысит нормальную. По мере приближения к скорости света масса тела увеличивается все быстрее, так что для его ускорения требуется все больше энергии. Согласно теории относительности объект никогда не сможет достичь скорости света, поскольку в данном случае его масса стала бы бесконечной, а в силу эквивалентности массы и энергии для этого потребовалась бы бесконечная энергия. Вот почему теория относительности навсегда обрекает любое обычное тело двигаться со скоростью, меньшей скорости света. Только свет или другие волны, не имеющие собственной массы, способны двигаться со скоростью света.

Искривленное пространство

Общая теория относительности Эйнштейна основана на революционном предположении, что гравитация не обычная сила, а следствие того, что пространство-время не является плоским, как принято было думать раньше. В общей теории относительности пространство-время изогнуто или искривлено помещенными в него массой и энергией. Тела, подобные Земле, движутся по искривленным орбитам не под действием силы, именуемой гравитацией.

Так как геодезическая линия – кратчайшая линия между двумя аэропортами, штурманы ведут самолеты именно по таким маршрутам. Например, вы могли бы, следуя показаниям компаса, пролететь 5966 километров от Нью-Йорка до Мадрида почти строго на восток вдоль географической параллели. Но вам придется покрыть всего 5802 километра, если вы полетите по большому кругу, сперва на северо-восток, а затем постепенно поворачивая к востоку и далее к юго-востоку. Вид этих двух маршрутов на карте, где земная поверхность искажена (представлена плоской), обманчив. Двигаясь «прямо» на восток от одной точки к другой по поверхности земного шара, вы в действительности перемещаетесь не по прямой линии, точнее сказать, не по самой короткой, геодезической линии.


Если траекторию космического корабля, который движется в космосе по прямой линии, спроецировать на двумерную поверхность Земли, окажется, что она искривлена.

Согласно общей теории относительности гравитационные поля должны искривлять свет. Например, теория предсказывает, что вблизи Солнца лучи света должны слегка изгибаться в его сторону под воздействием массы светила. Значит, свет далекой звезды, случись ему пройти рядом с Солнцем, отклонится на небольшой угол, из-за чего наблюдатель на Земле увидит звезду не совсем там, где она в действительности располагается.

Напомним, что согласно основному постулату специальной теории относительности все физические законы одинаковы для всех свободно двигающихся наблюдателей, независимо от их скорости. Грубо говоря, принцип эквивалентности распространяет это правило и на тех наблюдателей, которые движутся не свободно, а под действием гравитационного поля.

В достаточно малых областях пространства невозможно судить о том, пребываете ли вы в состоянии покоя в гравитационном поле или движетесь с постоянным ускорением в пустом пространстве.

Представьте себе, что вы находитесь в лифте посреди пустого пространства. Нет никакой гравитации, никакого «верха» и «низа». Вы плывете свободно. Затем лифт начинает двигаться с постоянным ускорением. Вы внезапно ощущаете вес. То есть вас прижимает к одной из стенок лифта, которая теперь воспринимается как пол. Если вы возьмете яблоко и отпустите его, оно упадет на пол. Фактически теперь, когда вы движетесь с ускорением, внутри лифта все будет происходить в точности так же, как если бы подъемник вообще не двигался, а покоился бы в однородном гравитационном поле. Эйнштейн понял, что, подобно тому как, находясь в вагоне поезда, вы не можете сказать, стоит он или равномерно движется, так и, пребывая внутри лифта, вы не в состоянии определить, перемещается ли он с постоянным ускорением или находится в однородном гравитационном поле. Результатом этого понимания стал принцип эквивалентности.

Принцип эквивалентности и приведенный пример его проявления будут справедливы лишь в том случае, если инертная масса (входящая во второй закон Ньютона, который определяет, какое ускорение придает телу приложенная к нему сила) и гравитационная масса (входящая в закон тяготения Ньютона, который определяет величину гравитационного притяжения) суть одно и то же.

Использование Эйнштейном эквивалентности инертной и гравитационной масс для вывода принципа эквивалентности и, в конечном счете, всей общей теории относительности – это беспрецедентный в истории человеческой мысли пример упорного и последовательного развития логических заключений.

Замедление времени

Еще одно предсказание общей теории относительности состоит в том, что около массивных тел, таких как Земля, должен замедляться ход времени.

Теперь, познакомившись с принципом эквивалентности, мы можем проследить ход рассуждений Эйнштейна, выполнив другой мысленный эксперимент, который показывает, почему гравитация воздействует на время. Представьте себе ракету, летящую в космосе. Для удобства будем считать, что ее корпус настолько велик, что свету требуется целая секунда, чтобы пройти вдоль него сверху донизу. И наконец, предположим, что в ракете находятся два наблюдателя: один – наверху, у потолка, другой – внизу, на полу, и оба они снабжены одинаковыми часами, ведущими отсчет секунд.

Допустим, что верхний наблюдатель, дождавшись отсчета своих часов, немедленно посылает нижнему световой сигнал. При следующем отсчете он шлет второй сигнал. По нашим условиям понадобится одна секунда, чтобы каждый сигнал достиг нижнего наблюдателя. Поскольку верхний наблюдатель посылает два световых сигнала с интервалом в одну секунду, то и нижний наблюдатель зарегистрирует их с таким же интервалом.

Что изменится, если в этом эксперименте, вместо того чтобы свободно плыть в космосе, ракета будет стоять на Земле, испытывая действие гравитации? Согласно теории Ньютона гравитация никак не повлияет на положение дел: если наблюдатель наверху передаст сигналы с промежутком в секунду, то наблюдатель внизу получит их через тот же интервал. Но принцип эквивалентности предсказывает иное развитие событий. Какое именно, мы сможем понять, если в соответствии с принципом эквивалентности мысленно заменим действие гравитации постоянным ускорением. Это один из примеров того, как Эйнштейн использовал принцип эквивалентности при создании своей новой теории гравитации.

Итак, предположим, что наша ракета ускоряется. (Будем считать, что она ускоряется медленно, так что ее скорость не приближается к скорости света.) Поскольку корпус ракеты движется вверх, первому сигналу понадобится пройти меньшее расстояние, чем прежде (до начала ускорения), и он прибудет к нижнему наблюдателю раньше чем через секунду. Если бы ракета двигалась с постоянной скоростью, то и второй сигнал прибыл бы ровно настолько же раньше, так что интервал между двумя сигналами остался бы равным одной секунде. Но в момент отправки второго сигнала благодаря ускорению ракета движется быстрее, чем в момент отправки первого, так что второй сигнал пройдет меньшее расстояние, чем первый, и затратит еще меньше времени. Наблюдатель внизу, сверившись со своими часами, зафиксирует, что интервал между сигналами меньше одной секунды, и не согласится с верхним наблюдателем, который утверждает, что посылал сигналы точно через секунду.

В случае с ускоряющейся ракетой этот эффект, вероятно, не должен особенно удивлять. В конце концов, мы только что его объяснили! Но вспомните: принцип эквивалентности говорит, что то же самое имеет место, когда ракета покоится в гравитационном поле. Следовательно, да-же если ракета не ускоряется, а, например, стоит на стартовом столе на поверхности Земли, сигналы, посланные верхним наблюдателем с интервалом в секунду (согласно его часам), будут приходить к нижнему наблюдателю с меньшим интервалом (по его часам). Вот это действительно удивительно!

Гравитация изменяет течение времени. Подобно тому как специальная теория относительности говорит нам, что время идет по-разному для наблюдателей, движущихся друг относительно друга, общая теория относительности объявляет, что ход времени различен для наблюдателей, находящихся в разных гравитационных полях. Согласно общей теории относительности нижний наблюдатель регистрирует более короткий интервал между сигналами, потому что у поверхности Земли время течет медленнее, поскольку здесь сильнее гравитация. Чем сильнее гравитационное поле, тем больше этот эффект.

Наши биологические часы также реагируют на изменения хода времени. Если один из близнецов живет на вершине горы, а другой – у моря, первый будет стареть быстрее второго. В данном случае различие в возрастах будет ничтожным, но оно существенно увеличится, коль скоро один из близнецов отправится в долгое путешествие на космическом корабле, который разгоняется до скорости, близкой к световой. Когда странник возвратится, он будет намного моложе брата, оставшегося на Земле. Этот случай известен как парадокс близнецов, но парадоксом он является только для тех, кто держится за идею абсолютного времени. В теории относительности нет никакого уникального абсолютного времени – для каждого индивидуума имеется своя собственная мера времени, которая зависит от того, где он находится и как движется.

C появлением сверхточных навигационных систем, получающих сигналы от спутников, разность хода часов на различных высотах приобрела практическое значение. Если бы аппаратура игнорировала предсказания общей теории относительности, ошибка в определении местоположения могла бы достигать нескольких километров!

Появление общей теории относительности в корне изменило ситуацию. Пространство и время обрели статус динамических сущностей. Когда перемещаются тела или действуют силы, они вызывают искривление пространства и времени, а структура пространства-времени, в свою очередь, сказывается на движении тел и действии сил. Пространство и время не только влияют на все, что случается во Вселенной, но и сами от всего этого зависят.

Время возле черной дыры

Представим себе бесстрашного астронавта, который остается на поверхности коллапсирующей звезды во время катастрофического сжатия. В некоторый момент по его часам, скажем в 11:00, звезда сожмется до критического радиуса, за которым гравитационное поле усиливается настолько, что из него невозможно вырваться. Теперь предположим, что по инструкции астронавт должен каждую секунду по своим часам посылать сигнал космическому кораблю, который находится на орбите на некотором фиксированном расстоянии от центра звезды. Он начинает передавать сигналы в 10:59:58, то есть за две секунды до 11:00. Что зарегистрирует экипаж на борту космического судна?

Ранее, проделав мысленный эксперимент с передачей световых сигналов внутри ракеты, мы убедились, что гравитация замедляет время и чем она сильнее, тем значительнее эффект. Астронавт на поверхности звезды находится в более сильном гравитационном поле, чем его коллеги на орбите, поэтому одна секунда по его часам продлится дольше секунды по часам корабля. Поскольку астронавт вместе с поверхностью движется к центру звезды, действующее на него поле становится все сильнее и сильнее, так что интервалы между его сигналами, принятыми на борту космического корабля, постоянно удлиняются. Это растяжение времени будет очень незначительным до 10:59:59, так что для астронавтов на орбите интервал между сигналами, переданными в 10:59:58 и в 10:59:59, очень ненамного превысит секунду. Но сигнала, отправленного в 11:00, на корабле уже не дождутся.

Все, что произойдет на поверхности звезды между 10:59:59 и 11:00 по часам астронавта, растянется по часам космического корабля на бесконечный период времени. С приближением к 11:00 интервалы между прибытием на орбиту последовательных гребней и впадин испущенных звездой световых волн станут все длиннее; то же случится и с промежутками времени между сигналами астронавта. Поскольку частота излучения определяется числом гребней (или впадин), приходящих за секунду, на космическом корабле будет регистрироваться все более и более низкая частота излучения звезды. Свет звезды станет все больше краснеть и одновременно меркнуть. В конце концов звезда настолько потускнеет, что сделается невидимой для наблюдателей на космическом корабле; все, что останется, – черная дыра в пространстве. Однако действие тяготения звезды на космический корабль сохранится, и он продолжит обращение по орбите.

Об учении Альберта Эйнштейна, которое свидетельствует об относительности всего, что происходит в этом бренном мире, не знает разве что ленивый. Уже почти сто лет длятся споры не только в мире науки, но и в мире практикующих физиков. Теория относительности Эйнштейна, описанная простыми словами достаточно доступна, и не является тайной для непосвященных.

Вконтакте

Несколько общих вопросов

Учитывая особенности теоретического учения великого Альберта, его постулаты могут быть неоднозначно расценены самыми разными течениями физиков-теоретиков, достаточно высокими научными школами, а также приверженцами иррационального течения физико – математической школы.

Еще в начале прошлого века, когда произошел всплеск научной мысли и на фоне общественных изменений стали возникать те или иные научные течения, появилась теория относительности всего, в чем живет человек. Каким образом бы не оценивали наши современники данную ситуацию, все в реальном мире действительно не статично, специальная теория относительности Эйнштейна :

  • Меняются времена, меняются взгляды и ментальное мнение общества на те или иные проблемы в социальном плане;
  • Общественные устои и мировоззрение относительно учения о вероятности в различных государственных системах и при особых условиях развития социума менялись с течением времени и под влиянием иных объективных механизмов.
  • Каким образом формировались взгляды общества на проблемы социального развития, таким же было отношение и мнения о теории Эйнштейна о времени .

Важно! Теория гравитации Эйнштейна была основанием для системных споров среди наиболее солидных ученых, как в начале ее разработки, так и во время ее завершения. О ней говорили, проходили многочисленные диспуты, она становилась темой разговоров в самых высокопоставленных салонах разных стран.

Ученые обсуждали, оно было предметом разговоров. Была даже такая гипотеза, что учение доступно для понимания только трем людям из ученого мира. Когда же пришло время к объяснению постулатов приступили жрецы самой таинственной из наук – евклидовой математики. Тогда была совершена попытка построить ее цифровую модель и такие же математически выверенные последствия ее действия на мировое пространство, то автор гипотезы признался, что стало очень трудно понимать даже то, что он создал. Итак, что представляет собой общая теория относительности, что исследует и какое прикладное применение она нашла в современном мире?

История и корни теории

На сегодняшний день в подавляющем большинстве случаев достижения великого Эйнштейна кратко называют полным отрицанием того, что изначально было непоколебимой константой. Именно это открытие позволило опровергнуть известную всем школьникам как физический бином.

Большинство населения планеты, так или иначе, внимательно и вдумчиво или поверхностно, пусть даже однажды, обращалось к страницам великой книги – Библии.

Именно в ней можно прочесть о том, что стало истинным подтверждением сути учения – того, над чем работал в начале прошлого века молодой американский ученый. Факты левитации другие достаточно привычные вещи в ветхозаветной истории однажды стали чудесами в новое время. Эфир – пространство, в котором человек жил совершенно иной жизнью. Особенности жизни в эфире изучали многие мировые знаменитости в области естественных наук. И теория гравитации Эйнштейна подтвердила, что описанное в древней книге – это правда.

Работы Хендрика Лоренца и Анри Пуанкаре позволили экспериментальным путем обнаружить те или иные особенности эфира. В первую очередь это работы по созданию математических моделей мира. Основой было практическое подтверждение того, что при движении материальных частиц в эфирном пространстве происходит их сокращение относительно направления движения.

Труды этих великих ученых позволили создать фундамент для главных постулатов учения. Именно данный факт дает постоянный материал для утверждения, что труды Нобелевского лауреата и релятивистская теория Альберта были и остаются плагиатом. Многие ученые и сегодня утверждают, что многие постулаты, были приняты намного раньше, например:

  • Понятие условной одновременности событий;
  • Принципы гипотезы о постоянном биноме и критериях скорости света.

Что сделать, чтобы понять теорию относительности ? Суть кроется в прошлом. Именно в трудах Пуанкаре было высказана гипотеза относительно того, что большие скорости в законах механики нуждаются в переосмыслении. Благодаря высказываниям французского физика ученый мир узнал о том, насколько относительно движение в проекции к теории эфирного пространства.

В статической науке рассматривался большой объем физических процессов для различных материальных объектов, движущихся с . Постулаты общей концепции описывают процессы, происходящие с ускоряющимися объектами, объясняют существование частиц гравитонов и собственно гравитации. Суть теории относительности в пояснении тех фактов, которые ранее были нонсенсом для ученых. В случае необходимости описания особенностей движения и законов механики, соотношений пространства и временного континуума в условиях приближения к скорости света следует применять постулаты исключительно учения относительности.

О теории коротко и ясно

Чем же настолько отличается учение великого Альберта от того, чем занимались физики до него? Ранее физика была наукой достаточно статичной, которая рассматривала принципы развития всех процессов в природе в сфере системы «здесь, сегодня и сейчас». Эйнштейн позволил увидеть все происходящее вокруг не только в трехмерном пространстве, но и относительно разнообразных объектов и точек времени.

Внимание! В 1905 году, когда Эйнштейн опубликовал свою теорию относительности , она позволила объяснить и в доступном варианте интерпретировать движение между разными инерциальными системами расчетов.

Ее основные положения – соотношение постоянных скоростей двух объектов, движущихся относительно друг друга вместо принятия одного из объектов, которые можно принимать как один из абсолютных факторов отсчета.

Особенность учения заключается в том, что его можно рассматривать в отношении одного исключительного случая. Главные факторы:

  1. Прямолинейность направления перемещения;
  2. Равномерность движения материального тела.

При изменении направления или других простейших параметров, когда материальное тело может ускоряться или сворачивать в стороны, законы статичного учения относительности не действительны. В этом случае происходит вступление в силу общих законов относительности, что может объяснить движение материальных тел в общей ситуации. Таким образом, Эйнштейн нашел объяснение всем принципам взаимодействия физических тел между собой в пространстве.

Принципы теории относительности

Принципы учения

Утверждение об относительности в течение ста лет подвергается самым оживленным дискуссиям. Большинство ученых рассматривают различные варианты применения постулатов в качестве применения двух принципов физики. И этот путь имеет наибольшую популярность в среде прикладной физики. Основные постулаты теории относительности, интересные факты , которые сегодня нашли неопровержимое подтверждение:

  • Принцип относительности. Сохранность соотношения тел при всех законах физики. Принятие их в качестве инерциальных систем отсчета, которые двигаются на постоянных скоростях относительно друг друга.
  • Постулат о скорости света. Она остается неизменяемой константой, при всех ситуациях, независимо от скорости и соотношения с источниками света.

Несмотря на противоречия между новым учением и основными постулатами одной из самых точных наук, опирающихся на постоянные статичные показатели, новая гипотеза привлекла свежим взглядом на окружающий мир. Успех ученому был обеспечен, что подтвердило вручение ему Нобелевской премии в области точных наук.

Что стало причиной столь ошеломительной популярности, и как Эйнштейн открыл свою теорию относительности ? Тактика молодого ученого.

  1. До сих пор ученые с мировым именем выдвигали тезис, а только затем проводили ряд практических исследований. Если на определенном моменте были получены данные, не подходящие под общую концепцию, они признавались ошибочными с подведением причин.
  2. Молодой гений применил кардинально иную тактику, ставил практические опыты, они были серийными. Полученные результаты, несмотря на то, что могли каким-то образом не вписываться в концептуальный ряд, выстраивались в стройную теорию. И никаких «ошибок» и «погрешностей», все моменты гипотезы относительности, примеры и итоги наблюдений четко вписывались в революционное теоретическое учение.
  3. Будущий нобелевский лауреат опроверг необходимость изучения загадочного эфира, где распространяются волны света. Убежденность в том, что эфир существует, привела к ряду значительных заблуждений. Основной постулат – изменение скоростей пучка света относительно наблюдающего за процессом в эфирной среде.

Теория относительности для чайников

Теория относительности — самое простое объяснение

Вывод

Главным достижением ученого является доказательство гармонии и единства таких величин, как пространство и время. Фундаментальность связи этих двух континуумов в составе трех измерений в сочетании с временным измерением, позволило познать многие тайны природы материального мира. Благодаря теории гравитации Эйнштейна стало доступно изучение глубин и другие достижения современной науки, ведь полностью возможности учения не использованы и на сегодняшний день.

Новый ум короля [О компьютерах, мышлении и законах физики] Пенроуз Роджер

Общая теория относительности Эйнштейна

Напомним великую истину, открытую Галилеем: все тела под действием силы тяжести падают одинаково быстро. (Это было блестящей догадкой, едва ли подсказанной эмпирическими данными, поскольку из-за сопротивления воздуха перья и камни все же падают не одновременно ! Галилей внезапно понял, что, если бы сопротивление воздуха можно было свести к нулю, то перья и камни падали бы на Землю одновременно.) Потребовалось три столетия, прежде чем глубокое значение этого открытия было по достоинству осознано и стало краеугольным камнем великой теории. Я имею в виду общую теорию относительности Эйнштейна - поразительное описание гравитации, для которого, как нам вскоре станет ясно, потребовалось введение понятия искривленного пространства-времени !

Какое отношение имеет интуитивное открытие Галилея к идее «кривизны пространства-времени»? Каким образом могло получиться, что эта концепция, столь явно отличная от схемы Ньютона, согласно которой частицы ускоряются под действием обычных гравитационных сил, оказалась способной не только сравняться в точности описания с ньютоновской теорией, но и превзойти последнюю? И потом, насколько верным будет утверждение, что в открытии Галилея было нечто такое, что не было позднее включено в ньютоновскую теорию?

Позвольте мне начать с последнего вопроса потому, что ответить на него проще всего. Что, согласно теории Ньютона, управляет ускорением тела под действием гравитации? Во-первых, на тело действует гравитационная сила , которая, как гласит открытый Ньютоном закон всемирного тяготения, должна быть пропорциональна массе тела . Во-вторых, величина ускорения, испытываемая телом под действием заданной силы, по второму закону Ньютона, обратно пропорциональна массе тела . Удивительное открытие Галилея зависит от того факта, что «масса», входящая в открытый Ньютоном закон всемирного тяготения, есть, в действительности, та же «масса», которая входит во второй закон Ньютона. (Вместо «та же» можно было бы сказать «пропорциональна».) В результате ускорение тела под действием гравитации не зависит от его массы. В общей схеме Ньютона нет ничего такого, что указывало бы, что оба понятия массы одинаковы. Эту одинаковость Ньютон лишь постулировал . Действительно, электрические силы аналогичны гравитационным в том, что и те, и другие обратно пропорциональны квадрату расстояния, но электрические силы зависят от электрического заряда , который имеет совершенно другую природу, чем масса во втором законе Ньютона. «Интуитивное открытие Галилея» было бы неприменимо к электрическим силам: о телах (заряженных телах) брошенных в электрическом поле, нельзя сказать, что они «падают» с одинаковой скоростью!

На время просто примем интуитивное открытие Галилея относительно движения под действием гравитации и попытаемся выяснить, к каким следствиям оно приводит. Представим себе Галилея, бросающего с Пизанской наклонной башни два камня. Предположим, что с одним из камней жестко скреплена видеокамера, направленная на другой камень. Тогда на пленке окажется запечатленной следующая ситуация: камень парит в пространстве, как бы не испытывая действия гравитации (рис. 5.23)! И так происходит именно потому, что все тела под действием гравитации падают с одной и той же скоростью.

Рис. 5.23. Галилей бросает два камня (и видеокамеру) с Пизанской башни

В описанной выше картине мы пренебрегаем сопротивлением воздуха. В наше время космические полеты открывают перед нами лучшую возможность проверки этих идей, так как в космическом пространстве нет воздуха. Кроме того, «падение» в космическом пространстве означает просто движение по определенной орбите под действием гравитации. Такое «падение» совсем не обязательно должно происходить по прямой вниз - к центру Земли. В нем вполне может быть и некоторая горизонтальная составляющая. Если эта горизонтальная составляющая достаточно велика, то тело может «падать» по круговой орбите вокруг Земли, не приближаясь к ее поверхности! Путешествие по свободной околоземной орбите под действием гравитации - весьма изощренный (и очень дорогой!) способ «падения». Как в описанной выше видеозаписи, астронавт, совершая «прогулку в открытом космосе», видит свой космический корабль парящим перед собой и как бы не испытывающим действия гравитации со стороны огромного шара Земли под ним! (См. рис. 5.24.) Таким образом, переходя в «ускоренную систему отсчета» свободного падения, можно локально исключить действие гравитации.

Рис. 5.24. Астронавт видит, что его космический корабль парит перед ним, как будто неподверженный действию гравитации

Мы видим, что свободное падение позволяет исключить гравитацию потому, что эффект от действия гравитационного поля такой же, как от ускорения Действительно, если вы находитесь в лифте, который движется с ускорением вверх, то вы просто ощущаете, что кажущееся гравитационное поле увеличивается, а если лифт движется с ускорением вниз, то вам кажется, что гравитационное поле убывает. Если бы трос, на котором подвешена кабина, оборвался, то (если пренебречь сопротивлением воздуха и эффектами трения) результирующее ускорение, направленное вниз (к центру Земли), полностью уничтожило бы действие гравитации, и люди, оказавшиеся в кабине лифта, стали бы свободно плавать в пространстве, подобно астронавту во время выхода в открытый космос, до тех пор, пока кабина не стукнулась бы о Землю! Даже в поезде или на борту самолета ускорения могут быть такими, что ощущения пассажира относительно величины и направления гравитации могут не совпадать с тем, где, как показывает обычный опыт, должны быть «верх» и «низ». Объясняется это тем, что действия ускорения и гравитации схожи настолько, что наши ощущения не способны отличить одни от других. Этот факт - то, что локальные проявления гравитации эквивалентны локальным проявлениям ускоренно движущейся системы отсчета, - и есть то, что Эйнштейн назвал принципом эквивалентности .

Приведенные выше соображения «локальны». Но если разрешается производить (не только локальные) измерения с достаточно высокой точностью, то в принципе можно установить различие между «истинным» гравитационным полем и чистым ускорением. На рис. 5 25 я изобразил в немного преувеличенном виде, как первоначально стационарная сферическая конфигурация частиц, свободно падающая под действием гравитации, начинает деформироваться под влиянием неоднородности (ньютоновского) гравитационного поля.

Рис. 5.25. Приливный эффект. Двойные стрелки указывают относительное ускорение (ВЕЙЛЬ)

Это поле неоднородно в двух отношениях. Во-первых, поскольку центр Земли расположен на некотором конечном расстоянии от падающего тела, частицы, расположенные ближе к поверхности Земли, движутся вниз с бо?льшим ускорением, чем частицы, расположенные выше (напомним закон обратной пропорциональности квадрату расстояния Ньютона). Во-вторых, по той же причине существуют небольшие различия в направлении ускорения для частиц, занимающих различные положения на горизонтали. Из-за этой неоднородности сферическая форма начинает слегка деформироваться, превращаясь в «эллипсоид». Первоначальная сфера удлиняется в направлении к центру Земли (а также в противоположном направлении), так как те ее части, которые ближе к центру Земли, движутся с чуть бо?льшим ускорением, чем те части, которые дальше от центра Земли, и сужается по горизонтали, так как ускорения ее частей, находящихся на концах горизонтального диаметра, слегка скошены «внутрь» - в направлении на центр Земли.

Это деформирующее действие известно как приливный эффект гравитации. Если мы заменим центр Земли Луной, а сферу из материальных частиц - поверхностью Земли, то получим в точности описание действия Луны, вызывающей приливы на Земле, причем «горбы» образуются по направлению к Луне и от Луны. Приливный эффект - общая особенность гравитационных полей, которая не может быть «исключена» с помощью свободного падения. Приливный эффект служит мерой неоднородности ньютоновского гравитационного поля. (Величина приливной деформации в действительности убывает обратно пропорционально кубу, а не квадрату расстояния от центра притяжения.)

Закон всемирного тяготения Ньютона, по которому сила обратно пропорциональна квадрату расстояния, допускает, как оказывается, простую интерпретацию в терминах приливного эффекта: объем эллипсоида, в который первоначально деформируется сфера, равен объему исходной сферы - в предположении, что сфера окружает вакуум. Это свойство сохранения объема характерно для закона обратных квадратов; ни для каких других законов оно не выполняется. Предположим далее, что исходная сфера окружает не вакуум, а некоторое количество материи общей массой М . Тогда возникает дополнительная компонента ускорения, направленная внутрь сферы из-за гравитационного притяжения материи внутри сферы. Объем эллипсоида, в который первоначально деформируется наша сфера из материальных частиц, сокращается - на величину, пропорциональную М . С примером эффекта уменьшения объема эллипсоида мы бы столкнулись, если бы выбрали нашу сферу так, чтобы она окружала Землю на постоянной высоте (рис. 5.26). Тогда обычное ускорение, обусловленное земным притяжением и направленное вниз (т. е. внутрь Земли), будет той самой причиной, по которой происходит сокращение объема нашей сферы.

Рис. 5.26. Когда сфера окружает некое вещество (в данном случае - Землю), возникает результирующее ускорение, направленное внутрь (РИЧЧИ)

В этом свойстве сжимания объема заключена оставшаяся часть закона всемирного тяготения Ньютона, а именно - что сила пропорциональна массе притягивающего тела.

Попробуем получить пространственно-временну?ю картину такой ситуации. На рис. 5.27 я изобразил мировые линии частиц нашей сферической поверхности (представленной на рис. 5.25 в виде окружности), причем я использовал для описания ту систему отсчета, в которой центральная точка сферы кажется покоящейся («свободное падение»).

Рис. 5.27. Кривизна пространства-времени: приливный эффект, изображенный в пространстве-времени

Позиция общей теории относительности состоит в том, чтобы считать свободное падение «естественным движением» - аналогичным «равномерному прямолинейному движению», с которыми имеют дело в отсутствие гравитации. Таким образом, мы пытаемся описывать свободное падение «прямыми» мировыми линиями в пространстве-времени! Но если взглянуть на рис. 5.27, то становится понятно, что использование слова «прямые» применительно к этим мировым линиям способно ввести читателя в заблуждение, поэтому мы будем в терминологических целях называть мировые линии свободно падающих частиц в пространстве-времени - геодезическими .

Но насколько хороша такая терминология? Что обычно понимают под «геодезической» линией? Рассмотрим аналогию для двумерной искривленной поверхности. Геодезическими называются такие кривые, которые на данной поверхности (локально) служат «кратчайшими маршрутами». Иначе говоря, если представить себе отрезок нити, натянутый на указанную поверхность (и не слишком длинный, чтобы он не мог соскользнуть), то нить расположится вдоль некоторой геодезической линии на поверхности.

Рис. 5.28. Геодезические линии в искривленном пространстве: линии сходятся в пространстве с положительной кривизной, и расходятся - в пространстве с отрицательной кривизной

На рис. 5.28 я привел два примера поверхностей: первая (слева) - поверхность так называемой «положительной кривизны» (как поверхность сферы), вторая - поверхность «отрицательной кривизны» (седловидная поверхность). На поверхности положительной кривизны две соседние геодезические линии, выходящие из начальных точек параллельно друг другу, начинают впоследствии изгибаться навстречу друг другу; а на поверхности отрицательной кривизны они изгибаются в стороны друг от друга.

Если мы представим себе, что мировые линии свободно падающих частиц в некотором смысле ведут себя как геодезические линии на поверхности, то окажется, что существует тесная аналогия между гравитационным приливным эффектом, о котором шла речь выше, и эффектами кривизны поверхности - причем как положительной кривизны, так и отрицательной. Взгляните на рис. 5.25, 5.27. Мы видим, что в нашем пространстве-времени геодезические линии начинают расходиться в одном направлении (когда они «выстраиваются» в сторону Земли) - как это происходит на поверхности отрицательной кривизны на рис. 5.28 - и сближаться в других направлениях (когда они смещаются горизонтально относительно Земли) - как на поверхности положительной кривизны на рис. 5.28. Таким образом, создается впечатление, что наше пространство-время, как и вышеупомянутые поверхности, тоже обладает «кривизной», только более сложной, поскольку из-за высокой размерности пространства-времени при различных перемещениях она может носить смешанный характер, не будучи ни чисто положительной, ни чисто отрицательной.

Отсюда следует, что понятие «кривизны» пространства-времени может быть использовано для описания действия гравитационных полей. Возможность использования такого описания в конечном счете следует из интуитивного открытия Галилея (принципа эквивалентности) и позволяет нам исключить гравитационную «силу» с помощью свободного падения. Действительно, ничто из сказанного мной до сих пор не выходит за рамки ньютонианской теории. Нарисованная только что картина дает просто переформулировку этой теории. Но когда мы пытаемся скомбинировать новую картину с тем, что дает предложенное Минковским описание специальной теории относительности - геометрии пространства-времени, которая, как мы знаем, применяется в отсутствие гравитации - в игру вступает новая физика. Результат этой комбинации - общая теория относительности Эйнштейна.

Напомним, чему учил нас Минковский. Мы имеем (в отсутствие гравитации) пространство-время, наделенное особого рода мерой «расстояния» между точками: если мы имеем в пространстве-времени мировую линию, описывающую траекторию какой-нибудь частицы, то «расстояние» в смысле Минковского, измеряемое вдоль этой мировой линии, дает время , реально прожитое частицей. (В действительности, в предыдущем разделе мы рассматривали это «расстояние» только для тех мировых линий, которые состоят из прямолинейных отрезков - но приведенное выше утверждение справедливо и по отношению к искривленным мировым линиям, если «расстояние» измеряется вдоль кривой.) Геометрия Минковского считается точной, если нет гравитационного поля, т. е. если у пространства-времени нет кривизны. Но при наличии гравитации мы рассматриваем геометрию Минковского уже лишь как приближенную - аналогично тому, как плоская поверхность лишь приблизительно соответствует геометрии искривленной поверхности. Вообразим, что, изучая искривленную поверхность, мы берем микроскоп, дающий все большее увеличение - так, что геометрия искривленной поверхности кажется все больше растянутой. При этом поверхность будет нам казаться все более плоской. Поэтому мы говорим, что искривленная поверхность имеет локальное строение евклидовой плоскости. Точно так же мы можем сказать, что при наличии гравитации пространство-время локально описывается геометрией Минковского (которая есть геометрия плоского пространства-времени), но мы допускаем некоторую «искривленность» на более крупных масштабах (рис. 5.29).

Рис. 5.29. Картина искривленного пространства-времени

В частности, как и в пространстве Минковского, любая точка пространства-времени является вершиной светового конуса - но в данном случае эти световые конусы расположены уже не одинаково. В главе 7 мы познакомимся с отдельными моделями пространства-времени, в которых явно видна эта неоднородность расположения световых конусов (см. рис. 7.13, 7.14). Мировые линии материальных частиц всегда направлены внутрь световых конусов, а линии фотонов - вдоль световых конусов. Вдоль любой такой кривой мы можем ввести «расстояние» в смысле Минковского, которое служит мерой времени, прожитого частицами так же, как и в пространстве Минковского. Как и в случае искривленной поверхности, эта мера «расстояния» определяет геометрию поверхности, которая может отличаться от геометрии плоскости.

Геодезическим линиям в пространстве-времени теперь можно придать интерпретацию, аналогичную интерпретации геодезических линий на двумерных поверхностях, учитывая при этом различия между геометриями Минковского и Евклида. Таким образом, наши геодезические линии в пространстве-времени представляют собой не (локально) кратчайшие кривые, а наоборот - кривые, которые (локально) максимизируют «расстояние» (т. е. время) вдоль мировой линии. Мировые линии частиц, свободно перемещающиеся под действием гравитации, согласно этому правилу действительно являются геодезическими. В частности, небесные тела, движущиеся в гравитационном поле, хорошо описываются подобными геодезическими линиями. Кроме того, лучи света (мировые линии фотонов) в пустом пространстве так же служат геодезическими линиями, но на этот раз - нулевой «длины». В качестве примера я схематически нарисовал на рис. 5.30 мировые линии Земли и Солнца. Движение Земли вокруг Солнца описывается «штопорообразной» линией, навивающейся вокруг мировой линии Солнца. Там же я изобразил фотон, приходящий на Землю от далекой звезды. Его мировая линия кажется слегка «изогнутой» вследствие того, что свет (по теории Эйнштейна) на самом деле отклоняется гравитационным полем Солнца.

Рис. 5.30. Мировые линии Земли и Солнца. Световой луч от далекой звезды отклоняется Солнцем

Нам необходимо еще выяснить, каким образом ньютоновский закон обратных квадратов может быть включен (после надлежащей модификации) в общую теорию относительности Эйнштейна. Обратимся еще раз к нашей сфере из материальных частиц, падающей в гравитационном поле. Напомним, что если внутри сферы заключен только вакуум, то, согласно теории Ньютона, объем сферы первоначально не изменяется; но если внутри сферы находится материя общей массой М , то происходит сокращение объема, пропорциональное М . В теории Эйнштейна (для малой сферы) правила в точности такие же, за исключением того, что не все изменение объема определяется массой М ; существует (обычно очень малый) вклад от давления , возникающем в окруженном сферой материале.

Полное математическое выражение для кривизны четырехмерного пространства-времени (которая должна описывать приливные эффекты для частиц, движущихся в любой данной точке по всевозможным направлениям) дается так называемым тензором кривизны Римана . Это несколько сложный объект; для его описания необходимо в каждой точке указать двадцать действительных чисел. Эти двадцать чисел называются его компонентами . Различные компоненты соответствуют различным кривизнам в различных направлениях пространства-времени. Тензор кривизны Римана обычно записывают в виде R tjkl , но так как мне не хочется объяснять здесь, что означают эти субиндексы (и, конечно, что такое тензор), то я запишу его просто как:

РИМАН .

Существует способ, позволяющий разбить этот тензор на две части, называемые, соответственно, тензором ВЕЙЛЯ и тензором РИЧЧИ (каждый - с десятью компонентами). Условно я запишу это разбиение так:

РИМАН = ВЕЙЛЬ + РИЧЧИ .

(Подробная запись тензоров Вейля и Риччи для наших целей сейчас совершенно не нужна.) Тензор Вейля ВЕЙЛЬ служит мерой приливной деформации нашей сферы из свободно падающих частиц (т. е. изменения начальной формы, а не размеров); тогда как тензор Риччи РИЧЧИ служит мерой изменения первоначального объема. Напомним, что ньютоновская теория гравитации требует, чтобы масса , содержащаяся внутри нашей падающей сферы, была пропорциональна этому изменению первоначального объема. Это означает, что, грубо говоря, плотность массы материи - или, что эквивалентно, плотность энергии (так как Е = mc 2 ) - следует приравнять тензору Риччи.

По существу, это именно то, что утверждают уравнения поля общей теории относительности, а именно - полевые уравнения Эйнштейна . Правда, здесь имеются некоторые технические тонкости, в которые нам сейчас, впрочем, лучше не вдаваться. Достаточно сказать, что существует объект, называемый тензором энергии-импульса , который объединяет всю существенную информацию об энергии, давлении и импульсе материи и электромагнитных полей. Я буду называть этот тензор ЭНЕРГИЕЙ . Тогда уравнения Эйнштейна весьма схематично можно представить в следующем виде,

РИЧЧИ = ЭНЕРГИЯ .

(Именно наличие «давления» в тензоре ЭНЕРГИЯ вместе с некоторыми требованиями непротиворечивости уравнений в целом приводят с необходимостью к учету давления в описанном выше эффекте сокращения объема.)

Кажется, что вышеприведенное соотношение ничего не говорит о тензоре Вейля. Тем не менее, оно отражает одно важное свойство. Приливный эффект, производимый в пустом пространстве, обусловлен ВЕЙЛЕМ . Действительно, из приведенных выше уравнений Эйнштейна следует, что существуют дифференциальные уравнения, связывающие ВЕЙЛЯ с ЭНЕРГИЕЙ - практически как во встречавшихся нам ранее уравнениях Максвелла. Действительно, точка зрения, согласно которой ВЕЙЛЯ надлежит рассматривать как своего рода гравитационный аналог электромагнитного поля (в действительности, тензора - тензора Максвелла), описываемого парой (Е , В ), оказывается весьма плодотворной. В этом случае ВЕЙЛЬ служит своего рода мерой гравитационного поля. «Источником» для ВЕЙЛЯ является ЭНЕРГИЯ - подобно тому, как источником для электромагнитного поля (Е , В ) является (? , j ) - набор из зарядов и токов в теории Максвелла. Эта точка зрения будет полезна нам в главе 7.

Может показаться весьма удивительным, что при столь существенных различиях в формулировке и основополагающих идеях, оказывается довольно трудно найти наблюдаемые различия между теориями Эйнштейна и теорией, выдвинутой Ньютоном двумя с половиной столетиями раньше. Но если рассматриваемые скорости малы по сравнению со скоростью света с , а гравитационные поля не слишком сильны (так, что скорости убегания гораздо меньше с , см. главу 7, «Динамика Галилея и Ньютона»), то теория Эйнштейна по существу дает те же результаты, что и теория Ньютона. Но в тех ситуациях, когда предсказания этих двух теорий расходятся, прогнозы теории Эйнштейна оказываются точнее. К настоящему времени был проведен целый ряд весьма впечатляющих экспериментальных проверок, которые позволяют считать новую теорию Эйнштейна вполне обоснованной. Часы, согласно Эйнштейну, в гравитационном поле идут чуть медленнее. Ныне этот эффект измерен непосредственно несколькими способами. Световые и радиосигналы действительно изгибаются вблизи Солнца и слегка запаздывают для наблюдателя, движущегося им навстречу. Эти эффекты, предсказанные изначально общей теорией относительности, на сегодняшний день подтверждены опытом. Движение космических зондов и планет требуют небольших поправок к ньютоновским орбитам, как это следует из теории Эйнштейна - эти поправки сегодня также проверены опытным путем. (В частности, аномалия в движении планеты Меркурия, известная как «смещение перигелия», беспокоившая астрономов с 1859 года, была объяснена Эйнштейном в 1915 году.) Возможно, наиболее впечатляющим из всего следует считать серию наблюдений над системой, называемой двойным пульсаром , которая состоит из двух небольших массивных звезд (возможно, двух «нейтронных звезд», см. гл.7 «Черные дыры»). Эта серия наблюдений очень хорошо согласуется с теорией Эйнштейна и служит прямой проверкой эффекта, полностью отсутствующего в теории Ньютона, - испускания гравитационных волн . (Гравитационная волна представляет собой аналог электромагнитной волны и распространяется со скоростью света с .) Не существует проверенных наблюдений, которые противоречили бы общей теории относительности Эйнштейна. При всей своей странности (на первый взгляд), теория Эйнштейна работает и по сей день!

Из книги Современная наука и философия: Пути фундаментальных исследований и перспективы философии автора Кузнецов Б. Г.

Из книги Митьковские пляски автора Шинкарёв Владимир Николаевич

Общая теория митьковской пляски 1. НЕДАЛЕКИЕ ИСТОЛКОВАТЕЛИ Ни для кого уже не секрет, что танцы, а, точнее, пляски являются наиболее широко распространенным видом творчества у митьков; это бесспорно. Спорны истолкования феномена митьковской пляски.Недалекие

Из книги Современная наука и философия: Пути фундаментальных исследований и перспективы философии автора Кузнецов Б. Г.

Теория относительности, квантовая механика и начало атомного века В 20– 30-е годы нашего столетия часто говорили о более глубоком воздействии квантовых идей, о более радикальном характере выводов из принципа неопределенности и из квантовой механики в целом по сравнению

Из книги Философский словарь разума, материи, морали [фрагменты] автора Рассел Бертран

107. Общая теория относительности Общая теория относительности (ОТО) – опубликованная в 1915 году, через 10 лет после появления специальной теории (СТО) – была прежде всего геометрической теорией гравитации. Эту часть теории можно считать прочно утвердившейся. Однако, она

Из книги Краткая история философии [Нескучная книга] автора Гусев Дмитрий Алексеевич

108. Специальная теория относительности Специальная теория ставит перед собой задачу сделать законы физики одинаковыми по отношению к любым двум системам координат, движущимся друг относительно друга прямолинейно и равномерно. Здесь необходимо было принять во внимание

Из книги Любители мудрости [Что должен знать современный человек об истории философской мысли] автора Гусев Дмитрий Алексеевич

12.1. Со скоростью света… (Теория относительности) Появление второй научной картины мира было связано в первую очередь со сменой геоцентризма гелиоцентризмом. Третья научная картина мира отказалась от какого-либо центризма вообще. По новым представлениям Вселенная стала

Из книги Физика и философия автора Гейзенберг Вернер Карл

Теория относительности. Со скоростью света Появление второй научной картины мира было связано в первую очередь со сменой геоцентризма гелиоцентризмом. Третья научная картина мира отказалась от какого-либо центризма вообще. По новым представлениям Вселенная стала

Из книги Далекое будущее Вселенной [Эсхатология в космической перспективе] автора Эллис Джордж

VII. ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ Теория относительности всегда играла в современной физике особо важную роль. В ней впервые была показана необходимость периодического изменения основополагающих принципов физики. Поэтому обсуждение тех проблем, которые были подняты и

Из книги Как-то раз Платон зашел в бар… Понимание философии через шутки автора Каткарт Томас

17.2.1. Общая теория относительности Эйнштейна (ОТО) / космология Большого взрыва В 1915 году Альберт Эйнштейн опубликовал полевые уравнения ОТО, связывающие кривизну пространства–времени с распределенной в пространстве–времени энергией: R?? - ?Rg?? = 8?Т??. В упрощенном

Из книги Хаос и структура автора Лосев Алексей Федорович

17.5.2.3. Текучее время в физике: специальная теория относительности, общая теория относительности, квантовая механика и термодинамика Беглый обзор четырех областей современной физики: специальной теории относительности (СТО), общей теории относительности (ОТО), квантовой

Из книги Удивительная философия автора Гусев Дмитрий Алексеевич

IX Теория относительности Что тут можно сказать? Каждый человек понимает этот термин по-своему. Димитрий: Мой друг, твоя проблема в том, что ты слишком много думаешь.Тассо: По сравнению с кем?Димитрий: Например, по сравнению с Ахиллесом.Тассо: А по сравнению с

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

ОБЩАЯ ТЕОРИЯ ЧИСЛА § 10. Вступление.Число является настолько основной и глубокой категорией бытия и сознания, что для его определения и характеристики можно брать только самые первоначальные, самые отвлеченные моменты того и другого. Математика- наука о числе-есть уже

Из книги Возвращение времени [От античной космогонии к космологии будущего] автора Смолин Ли

Со скоростью света. Теория относительности Появление второй научной картины мира было связано в первую очередь со сменой геоцентризма гелиоцентризмом. Третья научная картина мира отказалась от какого-либо центризма вообще. По новым представлениям Вселенная стала

Из книги Язык, онтология и реализм автора Макеева Лолита Брониславовна

Специальная теория относительности Эйнштейна и Пуанкаре Напомним принцип относительности Галилея, который гласит, что физические законы Ньютона и Галилея останутся совершенно неизменными, если от покоящейся системы отсчета мы перейдем в другую, движущуюся равномерно

Из книги автора

Глава 14 Теория относительности и возвращение времени Итак, признание реальности времени открывает новые подходы к пониманию того, как Вселенная выбирает законы, а также способы разрешения затруднений квантовой механики. Однако нам предстоит еще преодолеть серьезное

Из книги автора

2.4. Теория онтологической относительности и реализм Из тезиса о неопределенности перевода и идеи онтологических обязательств вытекает онтологическая относительность, которая прежде всего означает, что референция является непостижимой, что мы не можем знать, к чему

Теория относительности была представлена Альбертом Эйнштейном в начале 20-го века. В чем же состоит её суть? Рассмотрим основные моменты и понятным языком охарактеризуем ТОЭ.

Теория относительности практически ликвидировала несостыковки и противоречия физики 20-го века, заставила в корне поменять представление о структуре пространства-времени и экспериментально подтвердилась в многочисленных опытах и исследованиях.

Таким образом, ТОЭ легла в основу всех современных фундаментальных физических теорий. По сути – это мама современной физики!

Для начала стоит отметить, что существует 2 теории относительности:

  • Специальная теория относительности (СТО) – рассматривает физические процессы в равномерно движущихся объектов.
  • Общая теория относительности (ОТО) – описывает ускоряющиеся объекты и объясняет происхождение такого явления как гравитация и существование .

Понятное дело, что СТО появилась раньше и по сути является частью ОТО. О ней и поговорим в первую очередь.

СТО простыми словами

В основе теории лежит принцип относительности, согласно которому любые законы природы одинаковы относительно неподвижных и движущихся с постоянной скоростью тел. И из такой казалось бы простой мысли следует, что скорость света (300 000 м/с в вакууме) одинакова для всех тел.

Например, представьте, что вам подарили космический корабль из далёкого будущего, который может летать с огромной скоростью. На носу корабля устанавливается лазерная пушка, способная стрелять вперёд фотонами.

Относительно корабля такие частицы летят со скоростью света, однако относительно неподвижного наблюдателя они, казалось бы, должны лететь быстрее, так как обе скорости суммируются.

Однако на самом деле этого не происходит! Сторонний наблюдатель видит фотоны, летящие 300 000 м/с, как будто скорость космического корабля к ним не добавлялась.

Нужно запомнить: относительно любого тела скорость света будет неизменной величиной, как бы быстро оно не двигалось.

Из этого следуют потрясающие воображение выводы вроде замедления времени, продольном сокращении и зависимости массы тела от скорости. Подробнее об интереснейших следствиях Специальной теории относительности читайте в статье по ссылке ниже.

Суть общей теории относительности (ОТО)

Чтобы лучше её понять, нам нужно вновь объединить два факта:

  • Мы живем в четырехмерном пространстве

Пространство и время – это проявления одной и той же сущности под названием «пространственно-временной континуум». Это и есть 4-мерное пространство-время с осями координат x, y, z и t.

Мы, люди, не в состоянии воспринимать 4 измерения одинаково. По сути, мы видим только проекции настоящего четырехмерного объекта на пространство и время.

Что интересно, теория относительности не утверждает, что тела изменяются при движении. 4-мерные объекты всегда остаются неизменными, но при относительном движении их проекции могут меняться. И мы это воспринимаем как замедление времени, сокращение размеров и т. д.

  • Все тела падают с постоянной скоростью, а не разгоняются

Давайте проведём страшный мысленный эксперимент. Представьте, что вы едете в закрытой кабине лифта и находитесь в состоянии невесомости.

Такая ситуация могла возникнуть только по двум причинам: либо вы находитесь в космосе, либо свободно падаете вместе с кабиной под действием земной гравитации.

Не выглядывая из кабинки, абсолютно невозможно отличить два этих случая. Просто в одном случае вы летите равномерно, а в другом с ускорением. Вам придется угадывать!

Возможно, сам Альберт Эйнштейн размышлял над воображаемым лифтом, и у него появилась одна потрясающая мысль: если эти два случая невозможно отличить, значит падение за счет гравитации тоже является равномерным движением. Просто равномерным движение является в четырехмерном пространстве-времени, но при наличии массивных тел (например, ) оно искривляется и равномерное движение проецируется в обычное нам трёхмерное пространство в виде ускоренного движения.

Давайте рассмотрим еще один более простой, хоть и не совсем корректный пример искривления двухмерного пространства.

Можно представлять, что любое массивное тело под собой создает некоторую образную воронку. Тогда другие тела, пролетающие мимо, не смогут продолжить свое движение по прямой и изменят свою траекторию согласно изгибам искривленного пространства.

Кстати, если у тела не так много энергии, то его движение вообще может оказаться замкнутым.

Стоит отметить, что с точки зрения движущихся тел они продолжают перемещаться по прямой, ведь не чувствуют ничего такого, что заставляет их повернуть. Просто они попали в искривленное пространство и сами того не осознавая имеют непрямолинейную траекторию.

Нужно обратить внимание, что искривляется 4 измерения, в том числе и время, поэтому к этой аналогии стоит относиться осторожно.

Таким образом, в общей теории относительности гравитация – это вообще не сила, а лишь следствие искривление пространства-времени. На данный момент эта теория является рабочей версией происхождения гравитации и прекрасно согласуется с экспериментами.

Удивительные следствия ОТО

Световые лучи могут искривляться, пролетая вблизи массивных тел. Действительно, в космосе найдены далёкие объекты, которые «прячутся» за другими, но световые лучи их огибают, благодаря чему свет доходит до нас.


Согласно ОТО чем сильнее гравитация, тем медленнее протекает время. Этот факт обязательно учитывается при работе GPS и ГЛОНАСС, ведь на их спутниках установлены точнейшие атомные часы, которые тикают чуть-чуть быстрее, чем на Земле. Если этот факт не учитывать, то уже через сутки погрешность координат составит 10 км.

Именно благодаря Альберту Эйнштейну вы можете понять, где по близости располагается библиотека или магазин.

И, наконец, ОТО предсказывает существование черных дыр, вокруг которых гравитация настолько сильна, что время вблизи просто напросто останавливается. Поэтому свет, угодивший в черную дыру, не может её покинуть (отразиться).

В центре черной дыры из-за колоссального гравитационного сжатия образуется объект с бесконечно большой плотностью, а такого, вроде как, быть не может.

Таким образом, ОТО может приводить к весьма противоречивым выводам в отличие от , поэтому основная масса физиков не приняла её полностью и продолжила искать альтернативу.

Но многое ей и удаётся предсказывать удачно, примеру недавнее сенсационное открытие подтвердило теорию относительности и заставило вновь вспомнить великого учёного с высунутым языком. Любите науку, читайте ВикиНауку.

В статье описана теория относительности Эйнштейна без всяких формул и заумных слов

Многие из нас слышали про теорию относительности Альберта Эйнштейна, но некоторые не могут понять смысл этой теории. К слову, это первая теория за всю историю, которая уводит нас от привычного мировоззрения. Давайте поговорим о ней простыми словами. Все мы привыкли к трёхмерному восприятию: вертикальная плоскость, горизонтальная и глубина. Если же сюда добавить время и считать его четвёртой величиной, то мы получим четырёхмерное пространство. Это связано с тем, что время тоже относительная величина. Итак, всё в нашем мире относительно. Что это значит? Например, возьмём двух братьев близнецов, одного из них отправим в космос со скоростью света лет на 20, а второго оставим на Земле. Когда первый близнец вернётся из космоса, он будет моложе того, кто остался на Земле, на 20 лет. Это связано с тем, что даже время относительно в нашем мире, как и всё остальное. Когда объект приближается к скорости света, время замедляется. При достижении скорости, равной скорости света, время останавливается совсем. Отсюда можно сделать вывод - если превысить скорость света, то время пойдёт назад, то есть в прошлое.

Это всё в теории, а что же на практике? Нельзя приблизится к скорости света, а уж тем более превысить её. Относительно скорости света - она всегда остаётся постоянной. Например, один человек стоит на платформе вокзала, а второй едет на поезде в его сторону. Если тот, который стоит на платформе, будет светить фонариком, то свет от него будет идти со скоростью 300000 километров в секунду. Если же тот человек, который едет в поезде, тоже будет светить фонариком, то скорость его света не увеличится из-за скорости поезда, она всегда равна 300000 километров в секунду.

Почему же всё-таки нельзя превысить скорость света? Дело в том, что при приближении к скорости, равной скорости света, масса объекта увеличивается, соответственно увеличивается и энергия, необходимая для движения объекта. Если достигнуть скорости света, то масса объекта будет бесконечной, как, в принципе, и энергия, а это невозможно. Со скоростью света могут двигаться только объекты, не имеющие своей массы, а этим объектом как раз и является свет.

Помимо этого, в это дело включается гравитация, она может изменять время. Согласно теории, чем выше гравитация - тем медленнее течёт время. Но это всё в теории, а как же на практике? Современные системы навигации, соединённые со спутниками, являются такими точными именно из-за этого. Если бы они не учитывали теорию относительности, то разница в измерениях могла быть порядка нескольких километров.

«Что такое теория относительности?» — короткометражный научно-популярный фильм, снятый режиссёром Семёном Райтбуртом на Втором творческом объединении киностудии «Моснаучфильм» в 1964 году.



Поделиться: