Водородная связь участвующая в формировании вторичной структуры. Вторичная структура белка двояка

Вторичная структура − это пространственное расположение полипептидной цепочки в виде α-спирали или β-складчатости безотносительно к типам боковых радикалов и их конформации.

Л. Полинг и Р. Кори предложили модель вторичной структуры белка в виде α-спирали, в которой водородные связи замыкаются между каждой первой и четвертой аминокислотой, что позволяет сохранять нативную структуру белка, осуществлять простейшие функции, защищать от разрушения. В образовании водородных связей принимают участие все пептидные группы, что обеспечивает максимальную стабильность, снижает гидрофильность и увеличивает гидрофобность белковой молекулы. α-спираль образуется самопроизвольно и является наиболее устойчивой конформацией, отвечающей минимуму свободной энергии.

Наиболее распространенным элементом вторичной структуры является правая α-спираль (α R). Пептидная цепь здесь изгибается винтообразно. Ha каждый виток приходится 3,6 аминокислотного остатка, шаг винта, т.е. минимальное расстояние между двумя эквивалентными точками, составляет 0,54 нм; α-спираль стабилизирована почти линейными водородными связями между NH-группой и СО-группой четвертого по счету аминокислотного остатка. Таким образом, в протяженных спиральных участках каждый аминокислотный остаток принимает участие в формировании двух водородных связей. Неполярные или амфифильные α-спирали с 5-6 витками часто обеспечивают заякоривание белков в биологических мембранах (трансмембранные спирали). Зеркально-симметричная относительно α R -спирали левая α-спираль (α L) встречается в природе крайне редко, хотя энергетически возможна. Закручивание полипептидной цепи белка в спиралеобразную структуру происходит вследствие взаимодействия между кислородом карбонильной группы i-того аминокислотного остатка и водородом амидогруппы (i+4)- аминокислотного остатка посредством образования водородных связей (рис.6.1).

Рис. 6.1. Вторичная структура белка: α-спираль

Другая форма спирали присутствует в коллагене, важнейшем компоненте соединительных тканей. Это левая спираль коллагена с шагом 0,96 нм и при остатке в 3,3 в каждом витке более пологая по сравнению с α-спиралью. В отличие от α-спирали образование водородных мостиков здесь невозможно. Структура стабилизирована за счет скручивания трех пептидных цепей в правую тройную спираль.

Наряду с α-спиралями в образовании вторичной структуры белка принимают также участие β-структуры, β-изгиб.

В отличие от конденсированной α-спирали β-слои почти полностью вытянуты и могут располагаться как параллельно, так и антипараллельно (рис.6.2).

Рис.6.2. Параллельное (а) и антипараллельное (б) расположение β-слоев

B складчатых структурах также образуются поперечные межцепочечные водородные связи (рис.6.3). Если цепи ориентированы в противоположных направлениях, структура называется антипараллельным складчатым листом (β α); если цепи ориентированы в одном направлении, структура называется параллельным складчатым листом (β n). В складчатых структурах α-С-атомы располагаются на перегибах, а боковые цепи ориентированы почти перпендикулярно средней плоскости листа, попеременно вверх и вниз. Энергетически предпочтительной оказывается β α -складчатая структура с почти линейными H-мостиками. В растянутых складчатых листах отдельные цепи чаще всего не параллельны, а несколько изогнуты относительно друг друга.

Рис.6.3. β-складчатая структура

Кроме регулярных в полипептидных цепях есть еще и нерегулярные вторичные структуры, т.е. стандартные структуры, не образующие длинных периодических систем. Это – β-изгибы они называются так потому, что часто стягивают верхушки соседних β-тяжей в антипараллельных β-шпильках). В изгибы обычно входит около половины остатков, не опавших в регулярные структуры белков.

Супервторичная структура − это более высокий уровень организации белковой молекулы, представленный ансамблем взаимодействующих между собой вторичных структур.

Первичная структура – определенная последовательность нуклео-тидов в цепи. Образована фосфодиэфирными связями. Начало цепи – 5"-конец (на его конце фосфатный остаток), конец, завершение цепи, обозначается как 3"(ОН)-конец.

Как правило, в образовании самой цепи азотистые основания не участвуют, но водородные связи между комплементарными азотистыми основаниями играют важную роль в формировании вторичной структуры НК:

· между аденином и урацилом в РНК или аденином и тимином в ДНК образуются 2 водородные связи,

· между гуанином и цитозином – 3.

Для НК характерна линейная, а не разветвленная структура. Кроме первичной и вторичной структуры для большинства НК характерна третичная структура – например, ДНК, тРНК и рРНК.

РНК (рибонуклеиновые кислоты). РНК содержится в цитоплазме (90%) и ядре. По структуре и функции РНК делятся на 4 вида:

1) тРНК (транспортные),

2) рРНК (рибосомные),

3) мРНК (матричные),

4) яРНК (ядерные).

Матричные РНК. На их долю приходится не более 5% всей РНК клетки. Синтезируется в ядре. Этот процесс называется транскрипцией. Представляет собой копию гена одной из цепей ДНК. Во время биосинтеза белка (этот процесс называется трансляцией) проникает в цитоплазму и связывается с рибосомой, где и происходит биосинтез белка. В мРНК содержится информация о первичной структуре белка (последовательности аминокислот в цепочке), т.е. последовательность нуклеотидов в мРНК полностью соответствует последовательности аминокислотных остатков в белке. 3 нуклеотида, кодирующие 1 аминокислоту, называются кодоном.

Свойства генетического кода. Совокупность кодонов составляет генетический код. Всего в коде 64 кодона, 61 – смысловые (им соответствует определенная амино-кислота), 3 – нонсенс-кодоны. Им не соответствует какая-либо аминокислота. Эти кодоны называются терминирующими, так как подают сигнал о завершении синтеза белка.

6 свойств генетического кода:

1) триплетность (каждая аминокислота в белке кодируется последовательностью из 3 нуклеотидов),

2) универсальность (един для всех типов клеток – бактериаль-ных, животных и растительных),

3) однозначность (1 кодону соответствует только 1 аминокис-лота),

4) вырожденность (1 аминокислота может кодироваться несколькими кодонами; только 2 аминокислоты – метионин и триптофан имеют по 1 кодону, остальные – по 2 и более),

5) непрерывность (генетическая информация считывается по 3 кодона в направлении 5"®3" без перерывов),

6) колинеарность (соответствие последовательности нуклео-тидов в мРНК последовательности аминокислотных остатков в белке).

Первичная структура мРНК

Полинуклеотидная цепь, в которой выделяют 3 главные области:

1) претранслируемая,

2) транслируемая,

3) посттранслируемая.

Претранслируемая область содержит 2 участка:

а) КЭП-участок – выполняет защитную функцию (обеспе-чивает сохранение генетической информации);

б) АГ-область – место прикрепления к рибосоме во время биосинтеза белка.

Транслируемая область содержит генетическую информацию о структуре одного или нескольких белков.

Посттранслируемая область представлена последовательностью нуклеотидов, содержащих аденин (от 50 до 250 нуклеотидов), поэтому называется поли-А-областью. Эта часть мРНК выполняет 2 функции:

а) защитную,

б) служит «проездным билетом» во время биосинтеза белка, так как после однократного использования от мРНК отщепляется несколько нуклеотидов из поли-А-области. Ее длина определяет кратность использования мРНК в биосинтезе белка. Если мРНК используется только 1 раз, то она не имеет поли-А-области., а ее 3"-конец завершается 1 или несколькими шпильками. Эти шпильки называются фрагментами нестабильности.

Матричная РНК, как правило, не имеет вторичной и третичной структуры (по крайней мере, об этом ничего не известно).

Транспортные РНК. Составляют 12-15% от всей РНК в клетке. Количество нуклеотидов в цепи – 75-90.

Первичная структура – полинуклеотидная цепь.

Вторичная структура – для ее обозначения используют модель Р. Холли, которая называется «листом клевера», имеет 4 петли и 4 плеча:

Акцепторный участок – место прикрепления аминокислоты, имеет у всех тРНК одну последовательность ЦЦА

Обозначения:

I – акцепторное плечо, 7 пар нуклеотидов,

II – дигидроуридиловое плечо (3-4 пары нуклеотидов) и дигидроуридиловая петля (D-петля),

III – псевдоуридиловое плечо (5 пар нуклеотидов) и псевдоуридиловая петля (Tψ-петля),

IV– антикодоновое плечо (5 пар нуклеотидов),

V – антикодоновая петля,

VI – дополнительная петля.

Функции петель:

  • антикодоновая петля – распознает кодон мРНК,
  • D-петля – для взаимодействия с ферментом во время биосинтеза белка,
  • TY-петля – для временного прикрепления к рибосоме во время биосинтеза белка,
  • дополнительная петля – для уравновешивания вторичной структуры тРНК.

Третичная структура – у прокариотов в виде веретена (D-плечо и TY-плечо сворачиваются вокруг и образуют веретено), у эукариотов в виде перевернутой буквы L.

Биологическая роль тРНК:

1) транспортная (доставляет аминокислоту к месту синтеза белка, к рибосоме),

2) адапторная (распознает кодон мРНК), переводит шифр нуклеотидной последовательности в мРНК в последователь-ность аминокислот в белке.

Рибосомные РНК, рибосомы. На их долю приходится до 80% от всей РНК клетки. Образуют «скелет», или остов рибосом. Рибосомы – нуклеопротеиновые комплексы, состоящие из большого количества рРНК и белков. Это «фабрики» по биосинтезу белка в клетке.

Первичная структура рРНК– полинуклеотидная цепь.

По молекулярной массе и количеству нуклеотидов в цепи различают 3 вида рРНК:

  • высокомолекулярную (около 3000 нуклеотидов);
  • среднемолекулярную (до 500 нуклеотидов);
  • низкомолекулярную (менее 100 нуклеотидов).

Для характеристики различных рРНК и рибосом принято использовать не молекулярную массу и количество нуклеотидов, а коэффициент седиментации (это скорость оседания в ультрацентрифуге). Коэффициент седиментации выражается в сведбергах (S),

1 S = 10-13секунд.

Например, одна из высокомолекулярных будет иметь коэффициент седиментации 23 S, средне- и низкомолекулярные соответственно 16 и 5 S.

Вторичная структура рРНК – частичная спирализация за счет водо-родных связей между комплементарными азотистыми основаниями, образование шпилек и петель.

Третичная структура рРНК – более компактная упаковка и наложе-ние шпилек в виде V- или U-образной формы.

Рибосомы состоят из 2 субъединиц – малой и большой.

У прокариотов малая субъединица будет иметь коэффициент седиментации 30 S, большая – 50 S, а вся рибосома – 70 S; у эукарио-тов соответственно 40, 60 и 80 S.

Состав, строение и биологическая роль ДНК. У вирусов, а также в митохондриях 1-цепочечная ДНК, в остальных клетках – 2-цепочечная, у прокариотов – 2-цепочечная кольцевая.

Состав ДНК – соблюдается строгое соотношение азотистых оснований в 2 цепях ДНК, которые определяются Правилами Чаргафа.

Правила Чаргафа:

  1. Количество комплементарных азотистых оснований равно (А=Т, Г=Ц).
  2. Молярная доля пуринов равна молярной доле пиримидинов (А+Г=Т+Ц).
  3. Число 6-кетооснований равно числу 6-аминооснований.
  4. Соотношение Г+Ц/ А+Т – коэффициент видовой специфичности. Для животных и растительных клеток < 1, у микроорганизмов колеблется от 0,45 до 2,57.

У микроорганизмов преобладает ГЦ-тип, АТ-тип характерен для позвоночных, беспозвоночных и растительных клеток.

Первичная структура – 2 полинуклеотидные, антипараллельные цепочки (см. первичную структуру НК).

Вторичная структура – представлена 2-цепочечной спиралью, внутри которой комплементарные азотистые основания уложены в виде «стопок монет». Вторичная структура удерживается за счет связей 2 типов:

  • водородных – они действуют по горизонтали, между комплементарными азотистыми основаниями (между А и Т 2 связи, между Г и Ц – 3),
  • силы гидрофобного взаимодействия – эти связи возникают между заместителями азотистых оснований и действуют по вертикали.

Вторичная структура характеризуется:

  • количеством нуклеотидов в спирали,
  • диаметром спирали, шагом спирали,
  • расстоянием между плоскостями, образуемыми парой комплементарных оснований.

Известно 6 конформаций вторичной структуры, которые обозначаются заглавными буквами латинского алфавита: A, B, C, D, E и Z. А, В и Z конформации типичны для клеток, остальные – для бесклеточных систем (например, в пробирке). Эти конформации отличаются основными параметрами, возможен взаимный переход. Состояние конформации во многом зависит от:

  • физиологического состояния клетки,
  • рН среды,
  • ионной силы раствора,
  • действия различных регуляторных белков и др.

Например, В- конфомацию ДНК принимает во время деления клетки и удвоения ДНК, А-конформацию – во время транскрипции. Z-структура является левозакрученной, остальные – правозакрученные. Z-струк-тура может встречаться и в клетке на участках ДНК, где повторяются динуклеотидные последовательности Г-Ц.

Впервые вторичная структура математически была рассчитана и смоделирована Уотсоном и Криком (1953 г.), за что они получили Нобелевскую премию. Как оказалось впоследствии, представленная ими модель соответствует В-конформации .

Основные ее параметры:

  • 10 нуклеотидов в витке,
  • диаметр спирали 2 нм,
  • шаг спирали 3,4 нм,
  • расстояние между плоскостями оснований 0,34 нм,
  • правозакрученная.

При формировании вторичной структуры формируется 2 вида бороздок – большая и малая (соответственно шириной 2,2 и 1,2 нм). Большие бороздки играют важную роль в функционировании ДНК, так как к ним присоединяются регуляторные белки, имеющие в качестве домена «цинковые пальцы».

Третичная структура – у прокариотов суперспираль, у эукариотов, и человека в том числе, имеет несколько уровней укладки:

  • нуклеосомный,
  • фибриллярный (или соленоидный),
  • хроматиновое волокно,
  • петельный (или доменный),
  • супердоменный (именно этот уровень можно видеть в электронном микроскопе в виде поперечной исчерченности).

Нуклеосомный. Нуклеосома (открыта в 1974 г.) представляет собой частицу дисководной формы, диаметр 11 нм, которая состоит из гистонового октамера, вокруг которого двухцепочечная ДНК делает 2 неполных витка (1,75 витка).

Гистоны – низкомолекулярные белки, содержат по 105-135 амино-кислотных остатков, в гистоне Н1 – 220 аминокислотных остатков, до 30% приходится на долю лиз и арг.

Гистоновый октамер называют кором. Он состоит из центрального тетрамера Н32-Н42 и двух димеров Н2А-Н2В. Эти 2 димера стабилизируют структуру и прочно связывают 2 полувитка ДНК. Расстояние между нуклеосомами называется линкером, в котором может содержаться до 80 нукклеотидов. Гистон Н1 препятствует раскручиванию ДНК вокруг кора и обеспечивает уменьшение расстояния между нуклеосомами, т. е. участвует в формировании фибриллллы (2-го уровня укладки третичной структуры).

При скручивании фибриллы формируется хроматиновое волокно (3-й уровень), при этом в одном витке обычно содержится 6-г нуклеосом, диаметр такой структуры увеличивается до 30 нм.

В интерфазных хромосомах хроматиновые волокна организованы в домены, или петли , состоящие из 35-150 тыс пар оснований и заякоренные на внутриядерном матриксе. В формировании петель принимают участие ДНК-связывающие белки.

Супердоменный уровень образуют до 100 петель, в этих участках хромосомы в электронном микроскопе хорошо заметны конденсированные плотно упакованные участки ДНК.

Благодаря такой укладке ДНК компактно уложена. Ее длина сокращается в 10 000 раз. В результате упаковки ДНК связывается с гистонами и другими белками, образуя нуклеопротеиновый комплекс в виде хроматина.

Биологическая роль ДНК:

  • хранение и передача генетической информации,
  • контроль деления и функционирования клетки,
  • генетический контроль запрограммированной гибели клетки.

В состав хроматина входят ДНК (30% от всей массы хроматина), РНК (10%) и белки (гистоновые и негистоновые).

Примерные варианты контрольной работы по теме

  • (Документ)
  • Фромберг А.Э. География. Ответы на экзаменационные билеты. 9 класс (Документ)
  • ЕГЭ. Обществознание. Ответы на билеты (Документ)
  • Соколова С.А. Физика. Ответы на экзаменационные билеты. 9 класс + шпаргалка (Документ)
  • Билеты по электробезопаснсти (Вопрос)
  • Панов С.В. Билеты по истории Беларуси 9 класс (Документ)
  • Миронов С.К. Основы безопасности жизнедеятельности. Ответы на экзаменационные билеты. 9 класс (Документ)
  • Фромберг А.Э. География 9 класс. Ответы на экзаменационные билеты + шпаргалки (Документ)
  • Шпаргалка - ответы на билеты по биологии (Шпаргалка)
  • n1.docx

    Вопрос 79. Первичная, вторичная, третичная и четвертичная структуры белков,-химические связи, обеспечивающие сохранение данной структуры. Денатурация и ренатурация белков.


    • Первичная структура - последовательность аминокислот в полипептидной цепи. Важными особенностями первичной структуры являются консервативные мотивы - сочетания аминокислот, играющих ключевую роль в функциях белка. Консервативные мотивы сохраняются в процессе эволюции видов, по ним часто удаётся предсказать функцию неизвестного белка.

    • Вторичная структура - локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями . Ниже приведены самые распространённые типы вторичной структуры белков:

      • ?-спирали - плотные витки вокруг длинной оси молекулы,в белках преобладает правозакрученная.

      • ?-листы (складчатые слои) - несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между относительно удалёнными друг от друга аминокислотами или разными цепями белка.
    Третичная структура - пространственное строение полипептидной цепи (набор пространственных координат составляющих белок атомов).

    3Полиаминные алкалоиды (производные путресцина , спермидина и спермина ).

    Медицинское применение растений-алкалоидоносов имеет давнюю историю. В XIX веке, когда первые алкалоиды были получены в чистом виде, они сразу нашли своё применение в клинической практике в качестве лекарственного средства . Многие алкалоиды до сих пор применяются в медицине (чаще в виде солей), например :


    Алкалоид

    Фармакологическое действие

    Аймалин

    антиаритмическое

    Атропин , скополамин , гиосциамин

    антихолинергические препараты

    Винбластин , винкристин

    противоопухолевое

    Винкамин

    сосудорасширяющее, антигипертензивное

    Кодеин

    противокашлевое средство

    Кокаин

    анестетик

    Колхицин

    средство от подагры

    Вторичная структура − это пространственное расположение полипептидной цепочки в виде α-спирали или β-складчатости безотносительно к типам боковых радикалов и их конформации.

    Л. Полинг и Р. Кори предложили модель вторичной структуры белка в виде α-спирали, в которой водородные связи замыкаются между каждой первой и четвертой аминокислотой, что позволяет сохранять нативную структуру белка, осуществлять простейшие функции, защищать от разрушения. В образовании водородных связей принимают участие все пептидные группы, что обеспечивает максимальную стабильность, снижает гидрофильность и увеличивает гидрофобность белковой молекулы. α-спираль образуется самопроизвольно и является наиболее устойчивой конформацией, отвечающей минимуму свободной энергии.

    Наиболее распространенным элементом вторичной структуры является правая α-спираль (α R). Пептидная цепь здесь изгибается винтообразно. Ha каждый виток приходится 3,6 аминокислотного остатка, шаг винта, т.е. минимальное расстояние между двумя эквивалентными точками, составляет 0,54 нм; α-спираль стабилизирована почти линейными водородными связями между NH-группой и СО-группой четвертого по счету аминокислотного остатка. Таким образом, в протяженных спиральных участках каждый аминокислотный остаток принимает участие в формировании двух водородных связей. Неполярные или амфифильные α-спирали с 5-6 витками часто обеспечивают заякоривание белков в биологических мембранах (трансмембранные спирали). Зеркально-симметричная относительно α R -спирали левая α-спираль (α L) встречается в природе крайне редко, хотя энергетически возможна. Закручивание полипептидной цепи белка в спиралеобразную структуру происходит вследствие взаимодействия между кислородом карбонильной группы i-того аминокислотного остатка и водородом амидогруппы (i+4)- аминокислотного остатка посредством образования водородных связей (рис.6.1).

    Рис. 6.1. Вторичная структура белка: α-спираль

    Другая форма спирали присутствует в коллагене, важнейшем компоненте соединительных тканей. Это левая спираль коллагена с шагом 0,96 нм и при остатке в 3,3 в каждом витке более пологая по сравнению с α-спиралью. В отличие от α-спирали образование водородных мостиков здесь невозможно. Структура стабилизирована за счет скручивания трех пептидных цепей в правую тройную спираль.

    Наряду с α-спиралями в образовании вторичной структуры белка принимают также участие β-структуры, β-изгиб.

    В отличие от конденсированной α-спирали β-слои почти полностью вытянуты и могут располагаться как параллельно, так и антипараллельно (рис.6.2).

    Рис.6.2. Параллельное (а) и антипараллельное (б) расположение β-слоев

    B складчатых структурах также образуются поперечные межцепочечные водородные связи (рис.6.3). Если цепи ориентированы в противоположных направлениях, структура называется антипараллельным складчатым листом (β α); если цепи ориентированы в одном направлении, структура называется параллельным складчатым листом (β n). В складчатых структурах α-С-атомы располагаются на перегибах, а боковые цепи ориентированы почти перпендикулярно средней плоскости листа, попеременно вверх и вниз. Энергетически предпочтительной оказывается β α -складчатая структура с почти линейными H-мостиками. В растянутых складчатых листах отдельные цепи чаще всего не параллельны, а несколько изогнуты относительно друг друга.

    Рис.6.3. β-складчатая структура

    Кроме регулярных в полипептидных цепях есть еще и нерегулярные вторичные структуры, т.е. стандартные структуры, не образующие длинных периодических систем. Это – β-изгибы они называются так потому, что часто стягивают верхушки соседних β-тяжей в антипараллельных β-шпильках). В изгибы обычно входит около половины остатков, не опавших в регулярные структуры белков.

    Супервторичная структура − это более высокий уровень организации белковой молекулы, представленный ансамблем взаимодействующих между собой вторичных структур:

    1. α-спираль − два антипараллельных участка, которые взаимодействуют гидрофобными комплементарными поверхностями (по принципу «впадина-выступ»);

    2. сверхспирализация α-спирали;

    3. βхβ − два параллельных участка β-цепи;

    4. β-зигзаг.

    Встречаются разнообразные способы укладки белковой цепи (рис. 6.5). Рисунок 6.5 взят с обложки журнала Nature 1977 г. (v.268, №.5620), где была напечатана статья Дж. Ричардсона о мотивах укладки белковых цепей.

    Домен – компактная глобулярная структурная единица внутри полипептидной цепи. Домены могут выполнять разные функции и подвергаться свертыванию в независимые компактные глобулярные структурные единицы, соединенные между собой гибкими участками внутри белковой молекулы.

    Водородная связь в молекуле белка осуществляется между имеющим частично положительный заряд атомом водорода одной группировки и атомом (кислород, азот), имеющим частично отрицательный заряд и неподеленную электронную пару другой группировки. В белках различают два варианта образования водородных связей: между пептидными группами

    и между боковыми радикалами полярных аминокислот. В качестве примера рассмотрим образование водородной связи между радикалами аминокислотных остатков, содержащих гидроксильные группы:

    Ван-дер-ваальсовы силы имеют электростатическую природу. Они возникают между разноименными полюсами диполя. В молекуле белка существуют положительно и отрицательно заряженные участки, между которыми возникает электростатическое притяжение.

    Рассмотренные выше химические связи принимают участие в формировании структуры белковых молекул. Благодаря пептидным связям образуются полипептидные цепи и, таким образом, формируется первичная структура белка. Пространственная организация белковой молекулы определяется в основном водородными, ионными связями, ван-дер-ваальсовыми силами, гидрофобными взаимодействиями. Водородные связи, возникающие между пептидными группами, определяют вторичную структуру белка. Формированиетретичной и четвертичной структуры осуществляется водородными связями, образующимися между радикалами полярных аминокислот, ионными связями, ван-дер-ваальсовыми силами, гидрофобными взаимодействиями. Дисульфидные связи принимают участие в стабилизации третичной структуры.

    Аминокислоты относительно низкомолекулярные амфотерные соединения, в состав которых кроме углерода, кислорода и водорода входит азот. Амфотерность аминокислот проявляется в способности карбоксильной группы (-СООН) отдавать Н + , функционируя как кислота, а аминной группы – (-NH 2) – принимать протон, проявляя свойства оснований, благодаря чему в клетке играют роль буферных систем.

    Большинство аминокислот – нейтральные: содержат одну амино- и одну карбоксильную группу. Основные аминокислоты содержат более одной аминогруппы, а кислые – более одной карбоксильной группы.

    В живых организмах встречается около 200 аминокислот, но только 20 из них входят в состав белков – это белокобразующие (основные, протеиногенные) аминокислоты (табл. 2), которые в зависимости от свойств радикала делят на три группы:

    1) неполярные (аланин, метионин, валин, пролин, лейцин, изолейцин, триптофан, фенилаланин);

    2) полярные незаряженные (аспарагин, глутамин, серин, глицин, тирозин, треонин, цистеин);

    3) полярные заряженные (аргинин, гистидин, лизин – положительно заряженные; аспарагиновая и глутаминовая кислоты – отрицательно).



    Таблица 2. Двадцать белокобразующих аминокислот

    Сокращенное название Аминокислота Сокращенное название Аминокислота
    Ала Аланин Лей Лейцин
    Арг Аргинин Лиз Лизин
    Асн Аспарагин Мет Метионин
    Асп Аспарагиновая кислота Про Пролин
    Вал Валин Сер Серин
    Гис Гистидин Тир Тирозин
    Гли Глицин Тре Треонин
    Глн Глутамин Три Триптофан
    Глу Глутаминовая кислота Фен Фенилаланин
    Иле Изолейцин Цис Цистеин

    Боковые цепи аминокислот (радикалы) бывают гидрофобными или гидрофильными и придают белкам соответствующие свойства. Эти свойства радикалов играют определяющую роль в формировании пространственной структуры (конформации ) белка.

    Аминогруппа одной аминокислоты способна вступать в реакцию с карбоксильной группой другой аминокислоты посредством пептидной связи (СО-NH), образуя дипептид . На одном конце молекулы дипептида находится свободная аминогруппа, а на другом – свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себе другие аминокислоты, образуя олигопептиды (до 10 аминокислот). Если таким образом соединяются 11 - 50 аминокислот, то образуется полипептид.

    Пептиды и олигопептиды играют в организме важную роль:

    Олигопептиды: гормоны (окситоцин, вазопрессин), антибиотики (грамицидин S); некоторые очень токсичные ядовитые вещества (аманитин грибов);

    Полипептиды: брадикинин (пептид боли); некоторые опиаты («естественные наркотики» человека) выполняющие функцию обезболивания (принятие наркотиков нарушает опиатную систему организма, поэтому наркома испытывает сильную боль – «ломку», которая в норме снимается опиатами); гомоны (инсулин, АКТГ и др.); антибиотики (грамицидин А), токсины (дифтерийный токсин).



    Белки образованы значительно большим количеством мономеров – от 51 до нескольких тысяч с относительной молекулярной массой свыше 6000. Молекулы различных белков отличаются друг от друга молекулярной массой, числом, составом и последовательностью расположения аминокислот в полипептидной цепи. Именно это объясняет огромное разнообразие белков; их количество у всех видов живых организмов составляет 10 10 – 10 12 .

    Соединяясь друг с другом пептидной связью, аминокислоты образуют цепочку, которая называется первичной структурой белка . Первичная структура специфична для каждого белка и определяется генетической информацией (последовательностью нуклеотидов ДНК). От первичной структуры зависят окончательная конформация и биологические свойства белка. Поэтому замена даже одной аминокислоты в полипептидной цепочке, или изменение расположения аминокислотных остатков обычно приводит к изменению структуры белка и к снижению, или утрате его биологической активности.

    Рис. Структура белковой молекулы: 1 - первичная; 2 - вторичная; 3 - третичная; 4 - четвертичная структуры.

    Вторичная структура возникает в результате образования водородных связей внутри одной полипептидной цепи (спиральная конфигурация, альфа-спираль) или между двумя полипептидными цепями (складчатые, бета-слои). Степень спирализации от 11 до 100%. На этом уровне биологически активными являются белки тканей с низким уровнем обменных процессов: кератин – структурный белок волос, шерсти, когтей, перьев и рогов, рогового слоя кожи позвоночных, фибрин крови, гиалин (спиральная структура); фиброин шелка (складчатая структура). Фибриллярные белки могут образовываться в результате скручивания нескольких спиралей вместе (3 у коллагена, 7 у кератина) или связывания боковыми цепями складчатых структур.

    Рис. Водородные связи.

    Третичная структура глобулярная) – характерна для большинства белков – трехмерное образование шаровидной формы, в которое складываются спиральные и неспиральные участки полипептидной цепи. Связи, стабилизирующие третичную структуру:

    1) электростатические силы притяжения между R-группами, несущими противоположно заряженные ионогенные группы (ионные связи);

    2) водородные связи между полярными (гидрофильными) R-группами;

    3)гидрофобные взаимодействия между неполярными (гидрофобными) R-группами;

    4) дисульфидные связи между радикалами двух молекул цистеина. Эти связи ковалентные. Они повышают стабильность третичной структуры, но не всегда являются обязательными для правильного скручивания молекулы. В ряде белков они могут вообще отсутствовать.

    Четвертичная структура – результат объединения за счет гидрофобных взаимодействий, при помощи водородных и ионных связей нескольких полипептидных цепей. Молекула глобулярного белка гемоглобина состоит из четырех (2 альфа - и 2 бета -) отдельных полипептидных субъединиц (протомеров) и небелковой части (простетической группы) гема . Только благодаря такому строению гемоглобин может выполнять свою транспортную функцию.

    По химическому составу белки разделяют на простые (протеины) и сложные (протеиды). Простые белки состоят только из аминокислот (альбумины, глобулины, протамины, гистоны, глутелины, проламины). Сложные в своем составе помимо аминокислот (белковая часть) содержат небелковую часть - нуклеиновые кислоты (нуклеопротеиды), углеводы (гликопротеиды), липиды (липопротеиды) металлы (металлопротеиды), фосфор (фосфопротеиды).

    Рис. Связи, стабилизирующие третичную структуру

    Белки обладают свойством обратимо изменять свою структуру в ответ на действие физических (высокая температура, облучение, высокое давление и т.д.) и химических (спирт, ацетон, кислоты, щелочи и др.) факторов, которое лежит в основе раздражимости, и происходит путем денатурации и ренатурации:

    - денатурация – процесс нарушения естественной (нативной) структуры белка; может быть обратимым, при условии сохранения первичной структуры.

    - ренатурация – процесс самопроизвольного восстановления структуры белка при возвращении нормальных условий среды.

    Рис. Денатурация и ренатурация белка: 1 - молекула белка третичной структуры; 2 - денатурированный белок; 3 - восстановление третичной структуры в процессе ренатурации.

    Функции белков :

    1) структурная (строительная):

    а) входят в состав биологических мембран, образуют цитоскелет клеток;

    б)являются составными частями органоидов (например, рибосом, клеточного центра и др.), хромосом (гистоновые белки);

    в) образуют цитоскелет (белок тубулин – составная часть микротрубочек);

    г) главный компонент опорных структур организма (коллаген кожи, хрящей, сухожилий; эластин кожи; кератин волос, ногтей, когтей, копыт, рогов, перьев);

    д) паутинные нити пауков.

    2) транспортная : связывают и переносят специфические молекулы, ионы (гемоглобин переносит кислород; альбумины крови транспортируют жирные кислоты, глобулины - ионы металлов и гормоны); мембранные белки принимают участие в транспорте веществ в клетку и из неё).

    3) сократительная (двигательная):

    а) в сокращении миофибрилл мышечной ткани участвуют актин и миозин, обеспечивая движение;

    б) белок тубулин в составе микротрубочек формирует веретено деления, которое обеспечивает движение хромосом во время митоза и мейоза;

    в) белок тубулин в составе ундулиподий ресничек и жгутиков , обеспечивает движение протист и специализированных клеток (сперматозоидов)

    4) ферментативная (каталитическая): более 2000 ферментов катализируют все биохимические реакции в клетке(супероксиддисмутаза нейтрализует свободные радикалы, амилаза расщепляет крахмал до глюкозы, цитохромы участвуют в фотосинтезе);

    5) регуляторная : некоторые белки являются гормонами, регулирующими обменвеществ в клетке и в организме (инсулин регулирует содержание глюкозы в крови, глюкагон – расщепление гликогена до глюкозы, гистоны – генную активность и др.);

    6) рецепторная (сигнальная): в мембранах имеются белки-рецепторы (интегральные), способные взаимодействовать с гормонами и другими биологически активными веществами; они изменять свою конформацию (пространственную структуру) и передают, таким образом, сигналы (информацию) от встречи с такими веществами в клетку; последняя вследствие этого, перестраивает биохимические реакции обмена веществ; некоторые мембранные белки также меняют свою структуру в ответ на действие факторов внешней среды (например, светочувствительный белок фитохром регулирует фотопериодические реакции растений; опсин – составная часть пигмента родопсина в сетчатке глаза);

    7) защитная : защищают организм от вторжения других организмов и от повреждений (антитела – иммуноглобулины блокируют чужеродные антигены, фибриноген, тромбопластин и тромбин предохраняют организм от кровопотерь, белок – интерферон защищает от вирусных инфекций);

    8) токсическая : белки-токсины образуются в организме многих змей, лягушек, насекомых, кишечнополостных, грибов, растений и бактерий;

    9) энергетическая : при полном окислении 1 г белка высвобождается 17,6 кДж энергии; однако белки становятся источником энергии только после исчерпания запасов углеводов и жиров;

    10) запасающая : яичный альбумин – запасной строительный и энергетический материал для развития эмбриона птиц; казеин молока также выполняет эти функции при вскармливании детенышей молоком.



    Поделиться: