Миелиновая оболочка нервных волокон. Можно ли восстановить миелиновую оболочку нерва

Нервная система человека и позвоночных животных имеет единый план строения и представлена центральной частью – головным и спинным мозгом, а также периферическим отделом – отходят от центральных органов нервами, что представляют собой отростки нервных клеток – нейронов.

Их совокупность образует нервную ткань, главными функциями которой являются возбудимость и проводимость. Эти ее свойства объясняются прежде всего особенностями строения оболочек нейронов и их отростков, состоящих из вещества, называемого миелином. В данной статье мы рассмотрим строение и функции этого соединения, а также выясним возможные способы его восстановления.

Почему нейроцити и их отростки покрыты миелином

Совсем не случайно дендриты и аксоны имеют защитный слой, состоящий из белково-липидных комплексов. Дело в том, что нарушение является биофизическим процессом, в основе которого лежат слабые электрические импульсы. Если электрический ток идет по проводу, то последний должен быть покрыт изоляционным материалом, чтобы уменьшить рассеивание электрических импульсов и не допустить снижение силы тока. Такие же функции в нервном волокне выполняет миелиновая оболочка. Кроме того, она является опорой, а также обеспечивает питание волокна.

Химический состав миелина

Как и большинство клеточных мембран, он имеет липопротеидную природу. Причем содержание жиров здесь очень высокая – до 75%, а белков – до 25%. Миелин в незначительном количестве содержит также гликолипиди и гликопротеиди. Химический состав его различается в спинномозговых и черепно-мозговых нервах.

В первых наблюдается высокое содержание фосфолипидов – до 45%, а остальное приходится на холестерин и цереброзиди. Демиелинизация (то есть замена миелина на другие вещества в нервных отростках) приводит к таких тяжелых аутоиммунных заболеваний, как, например, рассеянный склероз.

С химической точки зрения, этот процесс будет выглядеть так: миелиновая оболочка нервных волокон меняет свою структуру, что проявляется прежде всего в уменьшении процентного содержания липидов по отношению к белкам. Далее снижается количество холестерина и возрастает содержание воды. А все это приводит к постепенной замене миелина, содержащего олигодендроциты или шванновские клетки макрофаги, астроциты и межклеточную жидкость. Результатом таких биохимических изменений будет резкое снижение способности аксонов проводить возбуждение вплоть до полного блокирования прохождения нервных импульсов.

Особенности нейроглиальних клеток

Как мы уже говорили, миелиновая оболочка дендритов и аксонов образованная специальными структурами, которые характеризуются низкой степенью проницаемости для ионов натрия и кальция, а потому имеют только потенциалы покоя (они не могут проводить нервные импульсы и выполняют электроизоляционные функции). Данные структуры называются глиальными клетками. К ним относятся:

  • олигодендроциты;
  • волокнистые астроциты;
  • клетки епендими;
  • плазматические астроциты.

Все они формируются из наружного слоя зародыша – эктодермы и имеют общее название – макроглия. Глия симпатических, и парасимпатических соматических нервов представлена шванновскими клетками (нейролеммоцитами).

Строение и функции олигодендроцитов

Они входят в состав центральной нервной системы и являются клетками макроглии. Так как миелин – это белково-липидная структура, она способствует увеличению скорости проведения возбуждения. Сами клетки образуют электроизолирующий слой нервных окончаний в головном и спинном мозге, формируясь уже в период внутриутробного развития. Их отростки обертывают в складки своей внешней плазмалеммы нейроны, а также дендриты и аксоны. Получается, что миелин – это основной электроизолирующий материал, который разграничивает нервные отростки смешанных нервов.

Шванновские клетки и их особенности

Миелиновая оболочка нервов периферической системы образована нейролеммоцитами (шванновскими клетками). Их отличительная особенность заключается в том, что они способны образовывать защитную оболочку только одного аксона, и не могут формировать отростки, как это присуще олигодендроцитам. Между шванновскими клетками на расстоянии 1-2 мм располагаются участки, лишенные миелина, так называемые перехваты Ранвье. За ним скачкообразно происходит проведение электрических импульсов в пределах аксона. Леммоцити способны к репарации нервных волокон, а также выполняют трофическую функцию. В результате генетических аберраций клетки оболочки леммоцитов начинают неконтролируемое митотическое деление и рост, в результате чего в разных отделах нервной системы развиваются опухоли – шванномы (невриномы).

Роль микроглии в разрушение миелиновой структуры

Микроглия представляет собой макрофаги, способные к фагоцитозу и умеют распознавать различные патогенные частицы – антигены. Благодаря мембранных рецепторов эти глиальные клетки вырабатывают ферменты – протеазы, а также цитокины, например, интерлейкин 1. Он является медиатором воспалительного процесса и иммунитета. Миелиновая оболочка, функции которой заключаются в изоляции осевого цилиндра и улучшение проведения нервного импульса, может повреждаться интерлейкином. В результате этого, нерв «обнажается» и скорость проведения возбуждения резко снижается.

Более того, цитокины, активируя рецепторы, провоцируют избыточный транспорт ионов кальция в тело нейрона. Протеазы и фосфолипазы начинают расщеплять органеллы и отростки нервных клеток, что приводит к апоптозу – гибели данной структуры. Она разрушается, распадаясь на частицы, которые и пожирают макрофаги. Это явление называется ексайтотоксичностью. Оно вызывает дегенерацию нейронов и их окончаний, приводя к таким заболеваниям, как болезнь Альцгеймера и болезнь Паркинсона.

Мякотные нервные волокна

Если отростки нейронов – дендриты и аксоны, покрывает миелиновая оболочка, то они называются мякотними и иннервируют скелетную мускулатуру, входя в соматический отдел периферической нервной системы. Немиелинизированние волокна образуют вегетативную нервную систему и иннервируют внутренние органы.

Мякотные отростки имеют больший диаметр, чем безмякотние, и формируются следующим образом: аксоны прогибают плазматическую мембрану клеток глии и формируют линейные мезаксони. Затем они увеличиваются и шванновские клетки многократно обворачиваются вокруг аксона, образуя концентрические слои. Цитоплазма и ядро леммоцита перемещаются в область внешнего слоя, который называется неврилеммой или шванновской оболочкой. Внутренний слой леммоцита состоит из слоистого мезоксона и называется миелиновой оболочкой. Толщина ее в различных участках нерва неодинакова.

Как восстановить миелиновую оболочку

Рассматривая роль микроглии в процессе демиелинизации нервов, мы установили, что под действием макрофагов и нейромедиаторов (например, интерлейкинов) происходит разрушение миелина, что в свою очередь приводит к ухудшению питания нейронов и нарушение передачи нервных импульсов по аксонам. Данная патология провоцирует возникновение нейродегенеративных явлений: ухудшение когнитивных процессов, прежде всего памяти и мышления, появление нарушения координации движений тела и тонкой моторики.

В итоге возможна полная инвалидизация больного, которая возникает в результате аутоиммунных заболеваний. Поэтому вопрос о том, как восстановить миелин, в настоящее время стоит особенно остро. К числу таких способов относится прежде всего сбалансированная белково-липидная диета, правильный образ жизни, отсутствие вредных привычек. В тяжелых случаях заболеваний применяют медикаментозное лечение, восстанавливающее количество зрелых глиальных клеток – олигодендроцитов.

Дата публикации: 26.05.17

Миелиновая оболочка помогает нервам передавать сигналы. Если она повреждена, возникают проблемы с памятью, нередко у человека появляются специфические движения и функциональные нарушения. Определенные аутоиммунные болезни и внешние химические факторы, вроде пестицидов в еде, способны повредить миелиновую оболочку. Но существует ряд способов, в том числе витамины и пища, которые помогут регенерировать данное покрытие нервов: вам потребуются особые минералы и жиры, предпочтительно полученные посредством грамотной питательной диеты. Тем более это требуется, если вы страдаете от болезни, вроде рассеянного склероза: обычно организм в состоянии восстановить поврежденную миелиновую оболочку при некоторой помощи с вашей стороны, но если проявился склероз, лечение может стать очень трудным. Итак, здесь перечислены средства, которые помогут поддержать восстановление и регенерацию миелиновой оболочки, а также предотвратить склероз.

Вам потребуются:
фолиевая кислота;
— витамин B12;
— кислоты жирные незаменимые;
— витамин С;
— витамин D;
зеленый чай;
— мартиния;
— белая ива;
— босвелия;
— оливковое масло;
— рыба;
— орехи;
— какао;
— авокадо;
— цельнозерновые;
— бобовые;
— шпинат.

1. Обеспечьте себе добавки к пище в виде фолиевой кислоты и витамина B12. Телу требуются два этих вещества, чтобы защищать нервную систему и грамотно «чинить» миелиновые оболочки. В исследовании, опубликованном в российском медицинском журнале «Врачебное дело» в 1990-х, ученые обнаружили, что пациенты, страдающие от рассеянного склероза, которых лечили фолиевой кислотой, показали значительное улучшение по симптоматике и в отношении восстановления миелина. И фолиевая кислота, и В12 способны и помочь предотвратить разрушение, и регенерировать повреждение миелина.

2. Снизьте уровень воспаления в организме, чтобы защитить миелиновые оболочки от повреждения. Анти-воспалительная терапия на текущий момент - оплот лечения рассеянного склероза и в дополнение к принятию предписанных медикаментов, пациенты так же могут опробовать пищевые и травяные анти-воспалительные средства. Среди натуральных средств отмечены кислоты жирные незаменимые, витамин С, витамин D, зеленый чай, мартиния, белая ива и босвелия.

3. Потребляйте кислоты жирные незаменимые ежедневно. Миелиновая оболочка в основном состоит из кислоты жирной незаменимой: олеиновой кислоты, омега-6, найденной в рыбе, оливках, курице, орехах и семенах. Плюс, кушайте глубоководную рыбу — это обеспечит вам хорошее количество кислот омега-3: для улучшения настроения, обучения, памяти и здоровья мозга в целом. Жирные кислоты омега-3 снижают воспаление в теле и помогают защитить миелиновые оболочки.
Жирные кислоты так же можно найти в льняном семени, рыбьем жире, лососе, авокадо, и фасоли.

4. Поддерживайте иммунную систему. Воспаление, которое вызывает повреждение миелиновых оболочек, вызвано иммунными клетками и аутоиммунными заболеваниями организма. Питательные вещества, которые помогут иммунитету, включают: витамин С, цинк, витамин А, витамин Д и комплекс витаминов В. В исследовании 2006 г., опубликованном в «Журнале Американской медицинской ассоциации» (The Journal of the American Medical Association), витамин D был назван как средство, значительно помогающее снизить риск демиелинизации и проявления рассеянного склероза.

5. Кушайте пищу с высоким содержанием холина (витамин D) и инозита (инозитола; B8). Данные аминокислоты критичны в отношении восстановления миелиновых оболочек. Холин вы найдете в яйцах, говядине, бобах и некоторых орехах. Он помогает предотвратить отложение жиров. Инозит поддерживает здоровье нервной системы, оказывая помощь в создании серотонина. Орехи, овощи и бананы содержат инозитол. Две аминокислоты объединяются, чтобы произвести лецитин, который уменьшает содержание «плохих» жиров в кровотоке. Ну а холестерин и подобные жиры известны своим свойством препятствовать восстановлению миелиновых оболочек.

6. Кушайте продукты, богатые витаминами группы В. Витамин В-1, так же называемый тиамин, и В-12 - физические компоненты миелиновой оболочки. В-1 ищем в рисе, шпинате, свинине. Витамин В-5 можно найти в йогурте и тунце. Цельное зерно и молочные продукты богаты всеми витаминами из В-группы, и их так же можно найти в цельнозерновом хлебе. Данные питательные вещества усиливают метаболизм, сжигающий жиры в организме, а так же они переносят кислород.

7. Вам необходима и пища, содержащая медь. Липиды могут быть созданы только с использованием зависящих от меди энзимов. Без этой помощи другие питательные вещества не смогут сделать свою работу. Медь найдена в чечевице, миндале, семенах тыквы, кунжуте и полусладком шоколаде. Печень и морепродукты так же могут содержать медь в более низких дозах. Сухие травы, вроде орегано и тимьяна - это простой способ добавить данный минерал в свою диету.

Дополнения и предупреждения:

— Молоко, яйца и антациды способны вмешаться в усвоение меди;

— В кулинарных рецептах поменяйте оливковое жидкое масло на твердое (такое тоже бывает!);

— Если выпить слишком много витаминов группы В, они просто выйдут из организма, не причиняя ему вреда;

— Передозировка медью может вызвать серьезные проблемы ума и тела. Так что естественное потребление данного минерала - оптимальный вариант;

— Даже натуральные методики, вроде подбора пищи и прочего, должны курироваться медицинским представителем.

Миелиновая оболочка формируется из плоского выроста тела глиальной клетки, многократно оборачивающего аксон подобно изоляционной ленте. Цитоплазма в выросте практически отсутствует, в результате чего миелиновая оболочка представляет собой, по сути, множество слоёв клеточной мембраны .

Миелин прерывается только в области перехватов Ранвье, которые встречаются через правильные промежутки длиной примерно 1 мм. В связи с тем, что ионные токи не могут проходить сквозь миелин, вход и выход ионов осуществляется лишь в области перехватов. Это ведёт к увеличению скорости проведения нервного импульса. Таким образом, по миелинизированным волокнам импульс проводится приблизительно в 5-10 раз быстрее, чем по немиелинизированным.

Из вышесказанного становится ясным, что миелин и миелиновая оболочка являются синонимами. Обычно термин миелин употребляется в биохимии, вообще при упоминании его молекулярной организации, а миелиновая оболочка - в морфологии и физиологии.

Химический состав и структура миелина, произведённого разными типами глиальных клеток, различны. Цвет миелинизированных нейронов - белый, отсюда название «белого вещества» мозга.

Приблизительно на 70-75 % миелин состоит из липидов , на 25-30 % - из белков . Такое высокое содержание липидов отличает миелин от других биологических мембран.

Миелинизация в периферической НС

Обеспечивается Шванновскими клетками. Каждая Шванновская клетка формирует спиральные пластинки миелина и отвечает лишь за отдельный участок миелиновой оболочки отдельного аксона. Цитоплазма Шванновской клетки остается только на внутренней и наружной поверхностях миелиновой оболочки. Между изолирующими клетками также остаются перехваты Ранвье , которые здесь уже, чем в ЦНС.

Так называемые «немиелинизированные» волокна все равно изолированы, но по несколько иной схеме. Несколько аксонов частично погружены в изолирующую клетку, которая не смыкается вокруг них до конца.

Установлено, что поздняя миелинизация нейронов, продолжающаяся у человека даже во взрослом возрасте, сильно отличает его от шимпанзе и других приматов .

См. также

Напишите отзыв о статье "Миелин"

Примечания

Ссылки

  • - статья в периодике «Вопросы медицинской химии» № 6, 2000

Отрывок, характеризующий Миелин

– Что ж ты рад? – спрашивала Наташа. – Я так теперь спокойна, счастлива.
– Очень рад, – отвечал Николай. – Он отличный человек. Что ж ты очень влюблена?
– Как тебе сказать, – отвечала Наташа, – я была влюблена в Бориса, в учителя, в Денисова, но это совсем не то. Мне покойно, твердо. Я знаю, что лучше его не бывает людей, и мне так спокойно, хорошо теперь. Совсем не так, как прежде…
Николай выразил Наташе свое неудовольствие о том, что свадьба была отложена на год; но Наташа с ожесточением напустилась на брата, доказывая ему, что это не могло быть иначе, что дурно бы было вступить в семью против воли отца, что она сама этого хотела.
– Ты совсем, совсем не понимаешь, – говорила она. Николай замолчал и согласился с нею.
Брат часто удивлялся глядя на нее. Совсем не было похоже, чтобы она была влюбленная невеста в разлуке с своим женихом. Она была ровна, спокойна, весела совершенно по прежнему. Николая это удивляло и даже заставляло недоверчиво смотреть на сватовство Болконского. Он не верил в то, что ее судьба уже решена, тем более, что он не видал с нею князя Андрея. Ему всё казалось, что что нибудь не то, в этом предполагаемом браке.
«Зачем отсрочка? Зачем не обручились?» думал он. Разговорившись раз с матерью о сестре, он, к удивлению своему и отчасти к удовольствию, нашел, что мать точно так же в глубине души иногда недоверчиво смотрела на этот брак.
– Вот пишет, – говорила она, показывая сыну письмо князя Андрея с тем затаенным чувством недоброжелательства, которое всегда есть у матери против будущего супружеского счастия дочери, – пишет, что не приедет раньше декабря. Какое же это дело может задержать его? Верно болезнь! Здоровье слабое очень. Ты не говори Наташе. Ты не смотри, что она весела: это уж последнее девичье время доживает, а я знаю, что с ней делается всякий раз, как письма его получаем. А впрочем Бог даст, всё и хорошо будет, – заключала она всякий раз: – он отличный человек.

Первое время своего приезда Николай был серьезен и даже скучен. Его мучила предстоящая необходимость вмешаться в эти глупые дела хозяйства, для которых мать вызвала его. Чтобы скорее свалить с плеч эту обузу, на третий день своего приезда он сердито, не отвечая на вопрос, куда он идет, пошел с нахмуренными бровями во флигель к Митеньке и потребовал у него счеты всего. Что такое были эти счеты всего, Николай знал еще менее, чем пришедший в страх и недоумение Митенька. Разговор и учет Митеньки продолжался недолго. Староста, выборный и земский, дожидавшиеся в передней флигеля, со страхом и удовольствием слышали сначала, как загудел и затрещал как будто всё возвышавшийся голос молодого графа, слышали ругательные и страшные слова, сыпавшиеся одно за другим.
– Разбойник! Неблагодарная тварь!… изрублю собаку… не с папенькой… обворовал… – и т. д.
Потом эти люди с неменьшим удовольствием и страхом видели, как молодой граф, весь красный, с налитой кровью в глазах, за шиворот вытащил Митеньку, ногой и коленкой с большой ловкостью в удобное время между своих слов толкнул его под зад и закричал: «Вон! чтобы духу твоего, мерзавец, здесь не было!»
Митенька стремглав слетел с шести ступеней и убежал в клумбу. (Клумба эта была известная местность спасения преступников в Отрадном. Сам Митенька, приезжая пьяный из города, прятался в эту клумбу, и многие жители Отрадного, прятавшиеся от Митеньки, знали спасительную силу этой клумбы.)
Жена Митеньки и свояченицы с испуганными лицами высунулись в сени из дверей комнаты, где кипел чистый самовар и возвышалась приказчицкая высокая постель под стеганным одеялом, сшитым из коротких кусочков.
Молодой граф, задыхаясь, не обращая на них внимания, решительными шагами прошел мимо них и пошел в дом.
Графиня узнавшая тотчас через девушек о том, что произошло во флигеле, с одной стороны успокоилась в том отношении, что теперь состояние их должно поправиться, с другой стороны она беспокоилась о том, как перенесет это ее сын. Она подходила несколько раз на цыпочках к его двери, слушая, как он курил трубку за трубкой.
На другой день старый граф отозвал в сторону сына и с робкой улыбкой сказал ему:
– А знаешь ли, ты, моя душа, напрасно погорячился! Мне Митенька рассказал все.
«Я знал, подумал Николай, что никогда ничего не пойму здесь, в этом дурацком мире».
– Ты рассердился, что он не вписал эти 700 рублей. Ведь они у него написаны транспортом, а другую страницу ты не посмотрел.
– Папенька, он мерзавец и вор, я знаю. И что сделал, то сделал. А ежели вы не хотите, я ничего не буду говорить ему.
– Нет, моя душа (граф был смущен тоже. Он чувствовал, что он был дурным распорядителем имения своей жены и виноват был перед своими детьми но не знал, как поправить это) – Нет, я прошу тебя заняться делами, я стар, я…
– Нет, папенька, вы простите меня, ежели я сделал вам неприятное; я меньше вашего умею.
«Чорт с ними, с этими мужиками и деньгами, и транспортами по странице, думал он. Еще от угла на шесть кушей я понимал когда то, но по странице транспорт – ничего не понимаю», сказал он сам себе и с тех пор более не вступался в дела. Только однажды графиня позвала к себе сына, сообщила ему о том, что у нее есть вексель Анны Михайловны на две тысячи и спросила у Николая, как он думает поступить с ним.

Компонент

В миелине

В белом веществе

В сером веществе

Белки

Общ.фосфолипиды

Фофатидилсерин

Фосфатидилинозит

Холестерин

Сфингомиелин

Церебозиды

Плазмогены

ганглиозиды

Строение нервного волокна. Миелиновая оболочка

Из аксонов нейронов образуются нервные волокна . Каждое волокно состоит из осевого цилиндра (аксона), внутри которого находится аксоплазма с нейрофибриллами, митохондриями и синаптическими пузырьками.

В зависимости от строения оболочек, окутывающих аксоны, нервные волокна делят на: безмиелиновые (безмякотные) и миелиновые (мякотные).

1. Безмиелиновое волокно

Безмиелиновое волокно состоит из 7-12 тонких аксонов, которые проходят внутри тяжа, образованного цепочкой нейроглиальных клеток.

Безмиелиновые волокна имеют постганглионарные нервные волокна, входящие в состав вегетативной нервной системы.

2. Миелиновое волокно

Миелиновое волокно состоит из одного аксона, который окутан миелиновой оболочкой и окружен глиальными клетками.

Миелиновая оболочка образована плазматической мембраной Шванновской или олигодендроглиальной клетки, которая сложена вдвое и многократно обернута вокруг аксона. По длине аксона миелиновая оболочка образует короткие чехольчики - междоузлия , между которыми имеются немиелизированные участки – перехваты Ранвье.

Миелиновое волокно более совершенно, чем безмиелиновое, т.к. оно обладает более высокой скоростью передачи нервного импульса.

Миелиновые волокна имеют проводниковая система соматической нервной системы, преганглионарные волокна вегетативной нервной системы.

Молекулярная организация миелиновой оболочки (по Х.Хидену)

1-аксона; 2-миелин; 3-ось волокна; 4-белок (наружные слои); 5-липиды; 6-белок (внутренний слой); 7-холестерин; 8-цереброзид; 9- сфингомиелин; 10-фосфатидилсерин.

Химический состав миелина

Миелин содержит много липидов, мало цитоплазмы и белков. Мембрана миелиновой оболочки в расчете на сухую массу содержит 70% липидов (что в целом составляет около 65% всех липидов мозга) и 30% белков. 90% всех липидов миелина приходиться на холестерин, фосфолипиды и цереброзиды. Миелин содержит немного ганглиозидов.

Белковый состав миелина периферической и центральной нервной системы различен. Миелин ЦНС содержит три белка:

    Протеолипид, составляет 35 – 50% от общего содержания белка в миелине, имеет молекулярную массу 25кДа, растворим в органических растворителях;

    Основной белок А 1 , составляет 30% от общего содержания белка в миелине, имеет молекулярную массу 18кДа, растворим в слабых кислотах;

    Белки Вольфграма - несколько кислых белков большой массы растворимых в органических растворителях, функция которых неизвестна. Составляют 20% от общего содержания белка в миелине.

В миелине ПНС, протеолипид отсутствует, основной белок представлен белками А 1 (немного), Р 0 и Р 2 .

В миелине обнаружена ферментативная активность:

    холестеролэстеразы;

    фосфодиэстеразы, гидролизирующей цAMФ;

    протеинкиназы А, фосфорилирующей основной белок;

    сфингомиелиназы;

    карбоангидразы.

Миелин благодаря своему строению обладает более высокой стабильностью (устойчивостью к разложению), чем другие плазматических мембран.

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ В НЕРВНОЙ ТКАНИ

Энергетический обмен нервной ткани

Для мозга характерна высокая интенсивность энергетического обмена с преобладанием аэробных процессов. При массе 1400г (2% массы тела), он получает около 20% крови, выбрасываемой сердцем и приблизительно 30% всего кислорода, находящегося в артериальной крови.

Максимальный энергетический обмен в мозге наблюдается к периоду окончания миелинизации и завершения процессов дифференцировки у детей в возрасте 4 лет. При этом быстро растущая нервная ткань потребляет около 50% всего кислорода поступающего в организм.

Максимальная скорость дыхания обнаружена в коре больших полушарий, минимальная – в спинном мозге и периферических нервах. Нейронам свойственен аэробный обмен, тогда как метаболизм нейроглии адаптирован и к анаэробным условиям. Интенсивность дыхания серого вещества в 4 раза выше, чем белого.

В отличие от других органов, головной мозг практически не располагает запасами кислорода. Резервный кислород мозга расходуется в течение 10-12 секунд, что объясняет высокую чувствительность нервной системы к гипоксии.

Основным энергетическим субстратом нервной ткани является глюкоза, окисления которой обеспечивается ее энергией на 85-90%. Нервная ткань потребляет до 70% свободной глюкозы, выделяемой из печени в артериальную кровь. В физиологических условиях 85-90% глюкозы метаболизируется аэробным путем, а 10-15% - анаэробным.

В качестве дополнительных энергетических субстратов нейроны и глиальные клетки могут использовать аминокислоты , в первую очередь глутамат и аспартат.

В экстремальных состояниях нервная ткань переключается на кетоновые тела (до 50% всей энергии).

В ранний постнатальный период в мозге также окисляются свободные жирные кислоты и кетоновые тела .

Полученная энергия тратится в первую очередь:

    на создание мембранного потенциала , который используется для проведения нервных импульсов и активного транспорта;

    для работы цитоскелета , обеспечивающего аксональный транспорт, выделение нейромедиаторов, пространственной ориентации структурных единиц нейрона;

    для синтеза новых веществ , в первую очередь нейромедиаторов, нейропептидов, а также нуклеиновых кислот, белков, липидов;

    для обезвреживания аммиака .

Обмен углеводов нервной ткани

Нервная ткань характеризуется высоким углеводным обменом, в котором преобладает катаболизм глюкозы. Так как нервная ткань инсулиннезависима , с высокой активностью гексокиназы (имеет низкую константу Михаэлиса Ментона) и низкой концентрацией глюкозы, глюкоза поступает из крови в нервную ткань постоянно, даже если в крови мало глюкозы и отсутствует инсулин.

Активность ПФШ нервной ткани невелика. НАДФН 2 используется при синтезе нейромедиаторов, аминокислот, липидов, гликолипидов, компонентов нуклеиновых кислот и для работы антиоксидантной системы.

Высокая активность ПФШ наблюдается у детей в период миелинизации и при травмах головного мозга.

Обмен белков и аминокислот нервной ткани

Нервная ткань характеризуется высоким обменом аминокислот и белков.

Скорость синтеза и распада белков в разных отделах головного мозга неодинакова. Белки серого вещества больших полушарий и белки мозжечка отличаются высокой скоростью обновления, что связано с синтезом медиаторов, БАВ, специфических белков. Белое вещество, богатое проводниковыми структурам, обновляется особенно медленно.

Аминокислоты в нервной ткани используется как:

    источник «сырья» для синтеза белков, пептидов, некоторых липидов, ряда гормонов, витаминов, биогенных аминов и др. В сером веществе преобладает синтез БАВ, в белом – белков миелиновой оболочки.

    нейротрансмиттеры и нейромодуляторы. Аминокислоты и их производные участвуют в синаптической передаче (глу), в осуществлении межнейрональных связей.

    Источник энергии . Нервная ткань окисляет в ЦТК аминокислоты глутаминовой группы и аминокислоты с разветвленной боковой цепью (лейцин, изолейцин, валин).

    Для выведения азота . При возбуждение нервной системы возрастает образование аммиака (в первую очередь за счет дезаминирования АМФ), который связывается с глутаминовой кислотой с образованием глутамина. Реакцию с затратой АТФ катализирует глутаминсинтетаза.

Аминокислоты глутаминовой группы имеют самый активный метаболизм в нервной ткани.

N -ацетиласпарагиновая кислота (АцА) является частью внутриклеточного пула анионов и резервуаром ацетильных групп. Ацетильные группы экзогенной АцА служат источником углерода для синтеза жирных кислот в развивающемся мозге.

Ароматические аминокислоты имеют особое значение как предшественники катехоламинов и серотонина.

Метионин является источником метильных групп и на 80% используется для синтеза белка.

Цистатионин важен для синтеза сульфитидов и сульфатилрованных мукополисахаридов.

Обмен азота нервной ткани

Непосредственным источником аммиака в головном мозге служит непрямое дезаминирование аминокислот с участием глутаматдегидрогеназы, а так же дезаминирование с участием АМФ–ИМФ цикла.

Обезвреживание токсичного аммиака в нервной ткани происходит с участием α-кетоглутарата и глутамата.

Липидный обмен нервной ткани

Особенностью обмена липидов в мозге является то, что они не используются в качестве энергетического материала, а в основном идут на строительные нужды. Липидный обмен в целом невысокий и различается в белом и сером веществе.

В нейронах серого вещества из фосфоглицеридов наиболее интенсивно обновляются фосфотидилхолины и особенно фосфотидилинозитол, который является предшественником внутриклеточного посредника ИТФ.

Обмен липидов в миелиновых оболочках протекает медленно, очень медленно обновляются холестерин, цереброзиды и сфингомиелины. У новорожденных холестерин синтезируется в самой нервной ткани, у взрослых этот синтез резко снижается, вплоть до полного прекращения.

Нервное волокно – это удлиненный отросток нейронов, покрытый леммоцитами и миелиновой или безмиелиновой оболочкой. Основной его функцией является проводимость нервных импульсов. В периферической и центральной нервной системе преобладают мякотные (миелиновые) нервные волокна, которые иннервируют скелетную мускулатуру, безмякотные находятся в симпатическом отделе вегетативной системы и распространяются на внутренние органы. Волокна, не имеющие оболочки, называются голыми осевыми цилиндрами.

Нервное волокно имеет в основе отросток нейрона, который образует своеобразную ось. Снаружи он окружен миелиновой оболочкой с биомолекулярной липидной основой, состоящей из большого количества витков мезаксона, который по спирали накручивается на нейроновую ось. Таким образом, происходит миелинизация нервных волокон.

Миелиновые нервные волокна периферической системы сверху дополнительно покрыты вспомогательными Шванновскими клетками, поддерживающими аксон и питающими тело нейрона. Поверхность мякотной мембраны имеет интервалы – перехваты Ранвье, в этих местах осевой цилиндр прикрепляется к наружной Шванновской мембране.

Миелиновый слой не обладает электропроводящими свойствами, их имеют перехваты. Возбуждение происходит в ближайшем к месту воздействия внешнего раздражителя интервале Ранвье. Импульс передается скачкообразно, от одного перехвата к другому, это обеспечивает высокую скорость распространения импульса.

Миелиновые нервные волокна регулируют обмен веществ в мышечной ткани, обладают высоким сопротивлением по отношению к биоэлектрическому току.

Промежутки Ранвье генерируют и усиливают импульсы. У волокон центральной нервной системы нет Шванновской мембраны, эту функцию выполняют олигодендроглии.

Безмякотные ткани имеют несколько осевых цилиндров, у них нет миелинового слоя и перехватов, сверху покрыты Шванновскими клетками, между ними и цилиндрами образуются щелевидные пространства. Волокна имеют слабую изоляцию, допускают распространение импульса из одного отростка нейрона в другой, на всем протяжении контактируют с окружающей средой, скорость проведения импульсов гораздо ниже, чем у мякотных волокон, при этом организму требуется большее количество энергии.

Из мякотных и безмякотных отростков нейронов формируются крупные нервные стволы, которые, в свою очередь, разветвляются на более мелкие пучки и заканчиваются нервными окончаниями (рецепторные, двигательные, синапсы).

Нервные окончания – это конец миелиновых и безмиелиновых нервных волокон, который формирует межнейронные контакты, рецепторные и двигательные окончания.

Принципы классификации

Разные типы нервных волокон имеют неодинаковую скорость проведения импульсов возбуждения, это зависит от их диаметра, длительности потенциала действия и степени миелинизации. Существует прямо пропорциональная зависимость между скоростью и диаметром волокна.

Структурно-функциональный метод классификации нервных волокон Эрлангера-Гассера по скорости проведения нервных импульсов:

  • Миелиновое нервное волокно группы А: α, β, Υи δ. Самый большой диаметр и толстую оболочку имеют ткани α – 20 мк, они обладают хорошей скорость проводимости импульсов – 120 м/сек. Эти ткани иннервируют источник возбуждения из столба спинного мозга к скелетным рецепторам мышц, сухожильям, отвечают за тактильные ощущения.

Остальные типы волокон имеют меньший диаметр (12 мк), скорость проведения импульса. Эти ткани передают сигналы от внутренних органов, источников боли в ЦНС.

  • Миелиновые волокна группы В относятся к . Общая скорость проведения импульса составляет 14 м/сек, потенциал действия в 2 раза больше, чем у волокон группы А. Миелиновая оболочка слабо выражена.
  • Безмиелиновые волокна группы С имеют очень маленький диаметр (0,5 мк) и скорость возбуждения (6 м/сек). Эти ткани иннервируют симпатическую нервную систему. К данной группе также относятся волокна, которые проводят импульсы от центров боли, холода, тепла и давления.

Отростки нейронов делят на афферентные и эфферентные. Первый тип обеспечивает передачу импульсов от рецепторов тканей в центральную нервную систему. Второй тип передает возбуждение от ЦНС к рецепторам тканей.

Функциональная классификация нервных волокон афферентного типа по Ллойду-Ханту:

Демиенилизация

Процесс демиелинизации нервных волокон – это патологическое повреждение миелиновой оболочки, которое вызывает нарушение функционирования тканей. Вызывают патологию воспалительные процессы, метаболические нарушения, нейроинфекция, интоксикация или ишемия тканей. Миелин замещается фиброзными бляшками, в результате нарушается проведение импульсов.

Первый тип демиелинизации – это миелинопатия, вызванная аутоиммунными реакциями организма, болезнью Канавана, синдромом Гийена-Барре, амиотрофией Шарко-Мари-Тута.

Второй тип – это миелинокластия. Патология характеризуется наследственной предрасположенностью к разрушению миелиновой оболочки (болезнь Бинсвангера).

Демиелинизирующие заболевания

Заболевания, приводящие к разрушению миелиновой оболочки, чаще всего имеют аутоиммунную природу, другой причиной может быть лечение нейролептиками или наследственная предрасположенность. Разрушение липидного слоя вызывает снижение скорости проведения импульсов раздражения.

Заболевания разделяют на те, которые затрагивают центральную нервную систему и патологии, повреждающие периферическую сеть. Болезни, которые влияют на работу ЦНС:

  • Миелопатия спинного мозга возникает в результате сдавливания миелиновых волокон межпозвоночными грыжами, опухолями, костными осколками, после . У больных снижается чувствительность, мышечная сила в области поражения, возникают парезы рук или ног, нарушается работа кишечника, мочевыводящей системы, развивается атрофия мышц нижних конечностей.
  • Лейкодистрофия головного мозга вызывает поражение белого вещества. У пациентов нарушена координация движений, они не могут держать равновесие. Развивается мышечная слабость, появляются непроизвольные судороги, нервный тик. Постепенно ухудшается память, интеллектуальные способности, зрение и слух. На поздних стадиях возникает слепота, глухота, полный паралич, трудности во время проглатывания пищи.
  • Мелкоочаговая лейкоэнцефалопатия головного мозга чаще всего поражает мужчин старше 60 лет. Основными причинами является артериальная гипертензия и наследственная предрасположенность. У пациентов ухудшается память и внимание, появляется заторможенность, трудности с речью. Замедляется походка, нарушается координация движений, появляется недержание мочи, больному тяжело глотать пищу.
  • Синдром осмотической демиелинизации характеризуется распадом миелиновых оболочек в тканях головного мозга. У больных отмечается расстройство речевого аппарата, постоянное чувство сонливости, депрессии или повышенная возбудимость, мутизм, парез всех конечностей. На ранних стадиях заболевания процесс демиелинизации обратим.
  • Рассеянный склероз проявляется онемением одной или двух конечностей, частичная или полная потеря зрения, боль при движении глаз, головокружение, быстрая утомляемость, тремор конечностей, нарушение координации движений, покалывание в различных частях тела.
  • Болезнь Девика – это воспалительный аутоиммунный недуг, который поражает зрительный нерв и ствол спинного мозга. К симптомам относится различная степень нарушения зрения, вплоть до слепоты, парапарезы, тетрапарезы, нарушение функционирования органов малого таза.

Симптомы заболеваний зависят от области поражения миелиновых волокон. Выявить процесс демиелинизации можно с помощью компьютерной томографии, магниторезонансной терапии. Признаки поражения периферической нервной системы обнаруживаются на электромиографии.



Поделиться: