Цитоскелет. Микроворсинки

Для нормального функционирования человеческого организма нужно поступление пищи. Всасывание необходимых для жизни веществ и продуктов их расщепления осуществляется именно в тонком кишечнике. Расположенные в нем кишечные ворсинки и осуществляют эту функцию. Об их анатомии, размещении, цитологии и пойдет речь дальше.

Строение тонкого кишечника, его функции

В анатомии человека выделяют 3 отдела - двенадцатиперстную, тощую и подвздошную. Первый около 30 см длиной. Сюда поступают специальные ферменты из эпителия кишечника, желчь и ферменты поджелудочной железы. В этом же отделе начинается процесс всасывания. Вода и соли, аминокислоты и витамины, жирные кислоты активно высасываются с помощью ворсинок.

Между тощей и подвздошной не существует четкой внешней границы, а общая длина составляет 4,5-5,5 м. Но внутренние отличия, конечно, существуют. :

  • имеет большую толщину стенки;
  • кишечные ворсинки у нее длиннее и меньшего диаметра, а их количество больше;
  • она лучше снабжается кровью.

Все-таки основная функция двенадцатиперстной - переваривание пищи. Не только в полости кишечника этот процесс осуществляется, но и возле стенок (пристеночное пищеварение), а также внутри клеток (внутриклеточное).

Для осуществления последнего в слизистой есть специальные транспортные системы, свои для каждого ингредиента. Дополнительной функцией этого является всасывание. В остальных - это основная функция.

Размещение ворсинок и их анатомия

Кишечные ворсинки в пищеварительном канале располагаются во всех трех отделах тонкого кишечника и придают им бархатистый вид. Длина каждой из ворсинок приблизительно 1 мм, а размещение очень плотное. Они образуются из выпячиваний слизистой оболочки. На одном квадратном миллиметре поверхности первого и второго отделов тонкого кишечника их может быть от 22 до 40 штук, на подвздошной - до 30.

Снаружи все кишечные ворсинки покрыты эпителием. Каждая из клеток имеет множество выростов, которые называются микроворсинками. Их количество может достигать 4 тыс. на один эпителиоцит, что значительно увеличивает поверхность эпителия, и, как следствие, всасывающую поверхность кишечника.

Все кишечные ворсинки в пищеварительном канале человека имеют вдоль оси берущий начало на верхушке ворсинок и множество кровеносных капилляров, расположенных в строме.

Клеточный состав ворсинок

Именно наличие определенного типа клеток отвечает за то, как функционирует кишечная ворсинка. Но обо всем по порядку:

Каждая ворсинка, независимо от местоположения, выстлана слоем эпителия, состоящим из 3 клеточных разновидностей: столбчатого эпителиоцита, бокаловидного экзокриноцита и эндокриноцита.

Энтероциты

Это самый часто встречаемый в эпителии ворсинок тип клеток. Второе его название эпителиоцит столбчатого типа. Клетки призматической формы. А основная функция кишечных ворсинок выполняется именно ими. Энтероциты обеспечивают перемещение из ЖКТ в кровь и лимфу необходимых организму веществ, которые поступают во время принятия пищи.

У эпителиоцитов на поверхности есть особая каемка, образованная микроворсинками. Этих микроворсинок на 1 мкм 2 располагается от 60 до 90 штук. Именно они увеличивают всасывающую поверхность каждой клетки в 30-40 раз. Расположенный на поверхности микроворсинок гликокаликс вырабатывает расщепляющие ферменты.

Одной из разновидностей эпителиоцитов являются клетки с микроскладками или так называемые М-клетки. Их месторасположение - поверхность лимфатических фолликулов как групповых, так и одиночных. Их отличает более уплощенная форма и небольшое количество микроворсинок. Но при этом поверхность покрыта микроскладками, с помощью которых клетка способна захватывать макромолекулы и кишечного просвета.

Бокаловидные экзокриноциты и эндокриноциты

Одиночные клетки, количество которых увеличивается от двенадцатиперстной до подвздошной. Это типичные слизистые клетки, накапливающие, а затем выделяющие свой секрет на поверхность слизистой оболочки. Именно слизь способствует продвижению пищи вдоль кишечника и одновременно участвует в процессе пристеночного пищеварения.

Внешний вид клетки зависит от степени накопления в ней секрета, а само формирование слизи происходит в области размещения аппарата Гольджи. Пустая клетка, полностью выделившая свой секрет узкая и с уменьшенным ядром.

Именно эндокриноциты синтезируют и выделяют биологически активные вещества, которые не только играют пищеварительную функцию, но и играют важную роль в общем метаболизме. Основное место размещения этих клеток - двенадцатиперстная кишка.

Функции

Из строения становится сразу понятно, какую функцию выполняют кишечные ворсинки в пищеварительном процессе, поэтому лишь кратко их перечислим:

  1. Всасывание углеводов, белков, аминокислот, а также продуктов их разложения. Они передаются через ворсинки в капилляры и вместе с кровью переносятся в портальную систему печени.
  2. Всасывание липидов, а точнее, хиломикронов, частиц, полученных из липидов. Они передаются ворсинками в лимфатическую и далее в кровеносную систему, минуя печень.
  3. Еще одна функция кишечных ворсинок - секреторная, выделяет слизь для более легкого продвижения пищи по кишечнику.
  4. Эндокринная, ведь некоторыми клетками ворсинок вырабатываются гистамин и серотонин, секретин и многие другие гормоны и БАВы.

Закладка у эмбриона и регенерация после повреждений

Из каких клеток состоит и как функционирует кишечная ворсинка, мы разобрались, но когда же она закладывается в организме человека и из каких клеток? Разберемся в этом вопросе.

В конце второго месяца или начале третьего внутриутробного развития человека начинают формироваться из кишечной энтодермы отделы тонкого кишечника и его функциональные составляющие - складки, ворсинки, крипты.

Вначале эпителиальные клетки не имеют строгой дифференциации, только к концу третьего месяца происходит их разделение. Гликокаликс же на микроворсинках, которыми покрыты эпителиальные клетки, закладывается на четвертом месяце развития малыша.

На пятой неделе, при правильном течение беременности, происходит закладка серозной оболочка кишечника, а на восьмой - мышечной и соединительнотканной оболочки кишечника. Все оболочки закладываются из мезодермы (висцерального листка) и соединительнотканной мезенхимы.

Хотя все клетки и ткани заложены еще во внутриутробном развитии, но вовремя выполнения своих функций кишечные ворсинки могут повреждаться. Как же происходит восстановление участков, где погибли клетки? Путем митотического деления здоровых клеток, расположенных рядом. Они просто занимают место отмерших собратьев и начинают выполнять свою функцию.

Микроворсинки (microvilli) длиной до 1-2 мкм и диаметром до 0,1 мкм - это покрытые цитолеммой пальцевидные вырос­ты. В центре микроворсинки проходят пучки параллельных ак­тиновых филаментов, прикрепленных к цитолемме у верхушки микроворсинки и по бокам ее. Микроворсинки увеличивают свободную поверхность клеток. У лейкоцитов и клеток соеди­нительной ткани микроворсинки короткие, у кишечного эпите­лия - длинные, причем их так много, что они образуют так на­зываемую щеточную каемку. Благодаря актиновым филаментам микроворсинки подвижны.


Реснички и жгутики также подвижны, их движения маятнико­образные, волнообразные. Свободная поверхность реснитчатого эпителия дыхательных путей, семявыносящих канальцев, маточ­ных труб покрыта ресничками длиной до 5-15 мкм и диаметром 0,15-0,25 мкм. В центре каждой реснички имеется осевой фила­мент (аксонема), образованный девятью соединенными между собой периферическими двойными микротрубочками, ко­торые окружают аксонему. Начальная (проксимальная) часть микротрубочки заканчивается в виде базального тельца, располо­женного в цитоплазме клетки и состоящего также из микротрубо­чек. Жгутики по своему строению похожи на реснички, они со­вершают согласованные колебательные движения благодаря скольжению микротрубочек друг относительно друга.


Межклеточные соединения образуются в местах соприкосно­вения клеток друг с другом, они обеспечивают межклеточные взаимодействия. Такие соединения (контакты) подразделяются на простые, зубчатые и плотные. Простое соединение - это сближение цитолемм соседних клеток (межклеточное простран­ство) на расстояние, равное 15-20 нм. При зубчатом соединении выпячивания (зубцы) цитолеммы одной клетки заходят (вкли­ниваются) между зубцами другой клетки. Если выступы цито­леммы длинные, глубоко заходят между такими же выступами другой клетки, то такие соединения называют пальцевидными (интердигитации).


У специальных плотных межклеточных соединении цитолемма соседних клеток настолько сближена, что они сливаются друг с другом. При этом создается так называемая запирающая зона, не­проницаемая для молекул. Если плотное соединение цитолеммы происходит на ограниченном участке, то образуется пятно слипа­ния (десмосома). Десмосома представляет собой площадку высо­кой электронной плотности диаметром до 1,5 мкм, выполняю­щую функцию механической связи одной клетки с другой. Такие контакты чаще встречаются между эпителиальными клетками.


Встречаются также щелевидные соединения (нексусы), длина которых достигает 2-3 мкм. Цитолеммы у таких соединений отстоят друг от друга на 2-3 нм. Через такие контакты легко проходят ионы, молекулы. Поэтому нексусы называют также проводящими соединениями. Так, например, в миокарде через нексусы передается возбуждение от одних кардиомиоцитов другим.

Реснички и жгутики

Реснички и жгутики — органеллы специалъного значения, учасйвующие в процессах движения, — представляют собой выросты цитоплазмы, основу которых составляет картс из микротрубочек, называемй осевой нитью, или аксонемой (от греч. axis — ось и nema — нить). Длина ресничек равна 2-10 мкм, а их количество на поверхности одной реснитчатой клетки может достигать нескольких сотен. В единственном типе клеток человека, имеюпщх жгутик – спермиях – содержится только по одному жгутику длиноп 50-70 мкм. Аксонема образована 9 периферическими парами микротрубочек одной центрально расположенной парой; такое строение описьшается формулой (9 х 2) + 2 (рис. 3-16). Внутри каждой периферической пары за счет частичного слияния микротрубочек одна из них (А) полная, вторая (В) – неполная (2-3 димера обшие с микротрубочкой А).

Центральная пара микротрубочек окружена центральной оболоч-кой, от которой к периферическим дублетам расходятся радиальные сггицы- Периферические дублеты связаны друг с другом мостиками нексина, а от микротрубочки А к микротрубочке В соседнего дублета отходят "ручки" из белка динеина (см. рис. 3-16), который обладает активностью АТФазы.

Биение реснички и жгутика обусловлено скольжением соседних дублетов в аксонеме, которое опосредуется движением динеиновых ручек. Мутации, вызывающие изменения белков, входящих в состав ресничек и жгутиков, приводят к различным нарушениям функции соответствуюших клеток. При синдроме Картагенера (синдроме неподвижных ресничек), обычно обусловленном отсутствием динеиновых ручек; больные страдают хроническими заболеваниями дыхательной системы (связанными с нарушением функции очищения поверхности респираторного эпителия) и бесплодием (вследствие неподвижности спермиев).

Базальное тельце, по своему строению сходное с центриолью, лежит в основании каждой реснички или жгутика. На уровне апикального конца тельца микротрубочка С триплета заканчивается, а микротрубочки А и В продолжаются в соответствующие микротрубочки аксонемы реснички или жгутика. При развитии ресничек или жгутика базальное тельце играет роль матрицы, на которой поисходит сборка компонентов аксонемы.

Микрофиламенты — тонкие белковые нити диаметром 5-7 нм, лежащие в цитоплазме поодиночке, в виде септей или пучками. В скелетной мышце тонкие микрофиламенты образуют упорядоченные пучки, Взаимодействуя с более толстыми миозиновыми филаментами.

Кортикольноя (терминальная) сеть — зона сгущения микрофиламентов под плазмолеммой, характерная для болышнства клеток. В этой сети микрофиламенты переплетены между собой и "сшиты" друг с другом с помощью особых белков, самым распространенным из которых является филамин. Кортикальная сеть препятствует резкой и внезапной деформацш клетки при механических воздействиях и обеспечивает плавные изменения ее формы путем перестройки, которая облегчается актин-ростворяющими (преобразующими) ферментами.

Прикрепление микрофиламентов к плазмолемме осуществляется благодаря их связи с ее интегральными ("якорными") белками интегринами) — непосредственно или через ряд промежуточных белков талин, винкулин и α-актинин (см. рис. 10-9). Помимо этого, актиновые микрофиламенты прикрепляются к трансмембранным белкам в особых участках плазмолеммы, называемых адгезионными соединениями или, фокальными контактами, которые связывают клетки друг с другом или клетки с компонентами межклеточного вещества.

Актин — основной белок микроиламентов — встречается в мономерной форме (G-, или глобулярный актин), которая способна в присутствии цАМФ и Са2+ полимеризоваться в длишые цепи (F-, или фибриллярный актин). Обычно молекула актина имеет вид двух спирально скрученных нитей (см. рис. 10-9 и 13-5).

В микрофиламентах актин взаимодействует с рядом актин-связывающих белков (до нескольких десятков видов), выполняющих различные функции. Некоторые из них регулируют степень полимеризации актина, другие (например, филамин в кортикальной сети или фимбрин и виллин в микроворсинке) способствуют связьшанию отдельных микрофиламентов в системы. В немышечных клетках на актин приходится примерно 5-10% содержания белка, лишь около половины его организовано в филаменты. Микрофиламенты более устойчивы к физическим и химическим воздействиям, чем микротрубочки.

Функции микрофиламентов:

(1) обеспечение сократимости мышечных клеток (при взаимодействиис миозином);

(2) обеспечение функций, связанных с кортикальным слоем цитоплазмы и плазмолеммой (экзо- и эндоцитоз, образование псевдоподий и миграция клетки);

(3) перемещение внутри цитоплазмы органелл, транспортных пузырьков и других структур благодаря взаимодействию с некоторьай белками (минимиозином), связанными с поверхностью этих структур;

(4) обеспечение определенной жесткости клетки за счет наличия кортикальной сети, которая препятствует действию деформаций, но сама, перестраиваясь, способствует изменениям клеточной формы;

(5) формирование сократимой перетяжки при цитотомии, завершающей клеточное деление;

(6) образование основы ("каркаса") некоторых органелл (микроворсинок, стереоцилий);

(7) участие в организации структуры межклеточных соединений (опоясывающих десмосом).

Микроворсинки – пальцевидные выросты цитоплазмы клетки диаметром 0.1 мкм и длиной 1 мкм, основу которых образуют актиновые микрофиламенты. Микроворсинки обеспечивают многократное увеличение площади поверхности клетки, на которой происходит расщепление и всасывание веществ. На апикальной поверхности некоторых клеток, активно участвуюхщх в указанных процессах (в эпителии тонкой кишки и почечных канальцев) имеется до нескольких тысяч микроворсинок, образующих в совокупности щеточную каемку.

Рис. 3-17. Схема ультраструктурной организации микроворсинки. АМФ – актиновые микрофиламенты, АВ – аморфное вещество (апикальной части микроворсинки), Ф, В – фимбрин и виллин (белки, образующие поперечные сшивки в пучке АМФ), мм – молекулы минимиозина (прикрепляющие пучок АМФ к плазмолемме микроворсинки), ТС – терминальная сеть АМФ, С – спектриновые мостики (прикрепляют ТС к плазмолемме), МФ – миозиновые филаменты, ПФ – промежуточные филаменты, ГК – гликокаликс.

Каркас каждой микроворсинки образован пучком, содержащим около 40 микрофиламентов, лежащих вдоль ее длинной оси (рис. 3-17). В апикалъной части микроворсинки этот пучок закреплен в аморфном веществе. Его жесткость обусловлена поперечными сшивками из белков фимбрина и виллина, изнутри пучок прикрешюн к плазмолемме микроворсинки особыми белковыми мостиками (молекулами минимиозина. У основания микроворсинки микрофиламенты пучка вплетаются в терминальную сеть, среди элементов которой имеются миозиновые филаменты. Взаимодействие актиновых и миозиновых филаментов терминальной сети, вероятно, обусловливает тонус и конфигурацию микроворсинки.

Стереоцилии – видоизмененные длинные (в некоторых клетках – ветвяшиеся) микроворсинки – выявляются значительно реже, чем микроворсинки и, подобно последним, содержат пучок микрофиламентов.

⇐ Предыдущая123

Читайте также:

Микрофиламенты, микротрубочки и промежуточные филаменты как основные компоненты цитоскелета.

Актиновые микрофиламенты — структура, функции

Актиновые микрофиламенты представляют собой полимерные нитевидные образования диаметром 6-7 нм, состоящие из белка актина. Эти структуры обладают высокой динамичностью: на конце микрофиламента, обращенном к плазматической мембране (плюс-конец), идет полимеризация актина из его мономеров в цитоплазме, тогда как на противоположном (минус-конец) происходит деполимеризация.
Микрофиламенты , таким образом, обладают структурной полярностью: рост нити идет с плюс-конца, укорочение - с минус-конца.

Организация и функционирование актинового цитоскелета обеспечиваются целым рядом актинсвязывающих белков, которые регулируют процессы полимеризации -деполимеризации микрофиламентов, связывают их друг с другом и придают контрактильные свойства.

Среди таких белков особое значение имеют миозины.

Взаимодействие одного из их семейства - миозина II с актином лежит в основе мышечного сокращения, а в немышечных клетках придает актиновым микрофиламентам контрактильные свойства - способность к механическому напряжению. Эта способность играет исключительно важную роль во всех адгезионных взаимодействиях.

Формирование новых актиновых микрофиламентов в клетке происходит путем их ответвления от предшествующих нитей.

Чтобы новый микрофиламент смог образоваться, необходима своеобразная «затравка». В ее формировании ключевую роль играет белковый комплекс Аф 2/3, включающий два белка, весьма сходных с актиновыми мономерами.

Будучи активированным , комплекс Аф 2/3 прикрепляется к боковой стороне предсуществующего актинового микрофиламента и изменяет свою конфигурацию, приобретая способность присоединить к себе еще один мономер актина.

Так возникает «затравка», инициирующая быстрый рост нового микрофиламента, отходящего в виде ответвления от боковой стороны старой нити под углом около 70°, тем самым в клетке формируется разветвленная сеть новых микрофиламентов.

Рост отдельных нитей вскоре заканчивается, нить разбирается на отдельные АДФ-содержащие мономеры актина, которые после замены в них АДФ на АТФ вновь вступают в реакцию полимеризации.

Актиновый цитоскелет играет ключевую роль в прикреплении клеток к внеклеточному матриксу и друг к другу, в формировании псевдоподий, с помощью которых клетки могут распластываться и направленно перемещаться.

— Вернуться в раздел « онкология»

  1. Метилирование генов-супрессоров как причина гемобластозов — опухолей крови
  2. Теломераза — синтез, функции
  3. Теломера — молекулярная структура
  4. Что такое теломерный эффект положения?
  5. Альтернативные способы удлинения теломер у человека — иммортализация
  6. Значение теломеразы в диагностике опухолей
  7. Методы лечения рака влиянием на теломеры и теломеразу
  8. Теломеризация клеток — не ведет к злокачественной трансформации
  9. Адгезия клеток — последствия нарушения адгезивных взаимодействий
  10. Актиновые микрофиламенты — структура, функции

Микрофиламенты (тонкие филаменты) - компонент цитоскелета эукариотических клеток. Они тоньше микротрубочек и по строению представляют собой тонкие белковые нити диаметром около 6 нм.

Основным белком, входящим в их состав, является актин . Также в клетках может встречаться миозин. В связке актин и миозин обеспечивают движение, хотя в клетке это может делать и один актин (например, в микроворсинках).

Каждый микрофиламент представляет собой две перекрученные цепочки, каждая из которых состоит из молекул актина и других белков в меньших количествах.

В некоторых клетках микрофиламенты образуют пучки под цитоплазматической мембраной, разделяют подвижную и неподвижную часть цитоплазмы, участвуют в эндо- и экзоцитозе.

Также функциями являются обеспечение движения всей клетки, ее компонентов и др.

Промежуточные филаменты (встречаются не во всех клетках эукариот, их нет у ряда групп животных и всех растений) отличаются от микрофиламентов большей толщиной, которая составляет около 10 нм.

Микрофиламенты, их состав и функции

Они могут строиться и разрушаться с любого конца, в то время как тонкие филаменты полярны, их сборка идет с «плюс»-конца, а разборка - с «минус» (также как у микротрубочек).

Существуют различные типы промежуточных филаментов (отличаются по белковому составу), один из которых содержится в клеточном ядре.

Белковые нити, формирующие промежуточный филамент, антипараллельны.

Этим объясняется отсутствие полярности. На концах филамента находятся глобулярные белки.

Образуют своеобразное сплетение около ядра и расходятся к периферии клетки. Обеспечивают клетке возможность противостоять механическим нагрузкам.

Основной белок- актин.

Актиновые микрофиламенты.

Микрофиламенты в общем.

Встречаются во всех клетках эукариот.

Расположение

Микрофиламенты образуют пучки в цитоплазме подвижных клеток животных и образую кортикальный слой (под плазматической мембраной).

Основной белок- актин.

  • Неоднородный белок
  • Встречается в разных изоформах, кодируется разными генами

У млекопитающих 6 актинов: один в скелетных мышцах, один –в сердечной, два типа в гладких, два немышечных (цитоплазматических) актина=универсальный компонент любых клеток млекопитающих.

Все изоформы близки по аминокислотным последовательностям, вариантны лишь концевые участки.(они определяют скорость полимеризации, НЕ влияют на сокращение)

Свойства актина:

  • М=42 тыс;
  • в мономерной форме имеет вид глобулы, содержащей молекулу АТФ (G-актин);
  • полимеризация актина => тонкая фибрилла (F-актин, представляет пологую спиральную ленту);
  • актиновые МФ полярны по своим свойствам;
  • при достаточной концентрации G-актин начинает самопроизвольно полимеризоваться;
  • очень динамические структуры, которые легко разбираются и собираются.

При полимеризации (+) конец нити микрофиламента быстро связывается с G-актином => растет быстрее

(–) конца.

Малая концентрация G-актина=> F-актин начинает разбираться.

Критическая концентрация G-актина=>динамическое равновесие (микрофиламент имеет постоянную длину)

На растущий конец прикрпеляются мономеры с АТФ, в процессе полимеризации происходит гидролиз АТФ, мономеры стаются связанными с АДФ.

Молекулы актина+атф прочнее взаимодействуют друг с другом, чем мономеры, связанные с АДФ.

Стабильность фибриллярной системы поддерживается:

  • белком тропомиозином (придает жесткость);
  • филамином и альфа-актинином.

Микрофиламенты

Образуют поперечные скрепки между нитями f-актина=>сложная трехмерная сеть(придает гелеобразное состояние цитоплазме);

  • Белки, прикрепляющиеся к концам фибрилл, предотвращающие разборку;
  • Фимбрин (связывают филаменты в пучки);
  • Комплекс с миозинами= акто-миозиновый комплекс, способный к сокращению при расщеплении АТФ.

Функции микрофиламентов в немышечных клетках:

Быть частью сократительного аппарата;

Специализированные органеллы и структуры встречаются не во всех клетках.

Они характерны для зрелых клеток, являются признаками направления их дифференцировки и обеспечивают в них специфические функции. Примерами таких органелл являются микроворсинки, реснички, жгутики, миофибриллы, тонофибриллы, нейрофибриллы и некоторые другие органеллы.

Микроворсинки . Это структуры клетки, располагающиеся на ее внешней поверхности и выступающие во внеклеточное пространство. При световой микроскопии микроворсинки видны как тонкие выросты клетки. Если их много, то они формируют апикальную каемку на свободной поверхности. Эти выпячивания значительно расширяют площадь взаимодействия клетки с внешней средой.

Ферменты, прикрепленные к гликокаликсу и находящиеся в толще билипидного слоя мембраны микроворсинок, обеспечивают всасывание и/или переваривание веществ на поверхности клеток. В этом случае расширение контактной поверхности резко увеличивает эффективность подобных процессов, например комплекс микроворсинок в столбчатых эпителиоцитах тонкой кишки. В них микроворсинки тесно соприкасаются друг с другом, обильно покрывают внешнюю поверхность клетки. Толщина микроворсинок около 100 нм, а число и длина различны. Так, длина микроворсинок у столбчатых (призматических) клеток кишечника достигает 0,6…0,8 мкм.

Во многих клетках величина и размеры микроворсинок не постоянны. Так, в тироцигах щитовидной железы в период покоя они редкие и короткие, а при интенсивной нагрузке их высота и количество значительно увеличиваются.

Микроворсинки состоят из клеточной мембраны, гиалоплазмы и тонких микрофиламентов. Актиновые (тонкие) микрофиламенты располагаются параллельно поверхности мембраны в виде компактно упакованных, упорядоченных пучков. Внутри каждой микроворсинки располагается около 20…30 актиновых нитей. Положительный полюс микрофиламентов направлен к периферии и стыкуется с электронно-плотным аморфным веществом дистальной части (верхушкой), а в основании микроворсинки актиновые микрофиламенты вплетаются в сеть подобных им структур, формирующих кутикулу.

Тонкие микрофиламенты в микроворсинке лежат параллельно друг другу на расстоянии около 10 нм, регулярно соединяясь между собой с помощью белков - фимбрина и фасцина. Эти белковые комплексы образуют поперечные сцепления и объединяют тонкие микрофиламенты в компактные пучки. С мембранами тонкие микрофиламенты взаимодействуют с помощью минимиозина и виллина. Взаимодействие с минимиозинами позволяет микроворсинке сокращаться (уменьшать или увеличивать высоту).

Сходное строение с микроворсинками имеют стереоцилии. Они крупнее микроворсинок и не обладают всасывающей способностью.

Реснички и жгутики . Они представляют собой выпячивания цитоплазмы, окруженные клеточной мембраной, способные к активному движению. Органеллы хорошо заметны при большом увеличении микроскопа. Реснички и жгутики на ультраструктурном уровне имеют сходные принципы строения, но могут иметь разные функции. Реснички перемещают поверхностный субстрат полого органа, тогда как жгутик спермия позволяет передвигаться самой клетке.

В многоклеточных организмах животных строение ресничек и жгутиков резко отличается от подобных органелл прокариот. Жгутики у бактерий образованы белком флагеллином, не имеющим отношения к комплексам микротрубочек у эукариот.

Реснички у эукариот - это специальные органеллы движения, встречающиеся лишь в некоторых клетках. Реснички находятся в однослойном эпителии органов дыхания и женских половых путей. В реснитчатом эпигелиоците дыхательных путей можно найти около 50…60 ресничек.

Ресничка представляет собой тонкий цилиндрический вырост цитоплазмы с постоянным диаметром 300 нм, покрытый плазматической мембраной.

В основании ресничек и жгутика в цитоплазме видны хорошо окрашивающиеся мелкие гранулы - базальные тельца. В этой области над клеткой выступает выпячивание - аксонема. Аксонема («осевая нить») - сложная структура, состоящая из микротрубочек и выступающая в просвет или полость органа, выстланного реснитчатым эпителием. Проксимальная часть реснички (базальное тело) погружена в цитоплазму. Диаметры аксонемы и базального тельца одинаковые.

Базальное тельце по строению аналогично центриоли и состоит из девяти триплетов микротрубочек, между которыми расположены ручки, втулки и спицы. К базальному тельцу могут прикрепляться спутники, от которых отходят микротрубочки. Таким образом, базальное тельце, наряду с центросомой, является центром организации микротрубочек и может выполнять аналогичные функции.

Аксонема по составу опорного аппарата отличается от базального тельца. Стенку цилиндра аксонемы образуют 9 дуплетов микротрубочек. Кроме периферических дуплетов микротрубочек в центре аксонемы располагается пара центральных микротрубочек. Эти микротрубочки лежат отдельно на расстоянии примерно 25 нм. В целом систему микротрубочек реснички описывают как (9 х 2 + 2) в отличие от (9 х 3 + 0) системы центриолей и базальных телец.

Базальное тельце и аксонема структурно связаны друг с другом и составляют единое целое. Каждая из двух первых микротрубочек девяти триплетов базального тельца является основой для дуплетов микротрубочек цитоплазматического выроста, таким образом, две микротрубочки триплетов базального тельца являются микротрубочками дуплетов аксонемы. Они полимеризуются от базального тельца на основании реснички.

Из дуплета а-микротрубочка полная и образована 13 тубулинами. Неполная b-микротрубочка составлена 11 тубулинами, так как две глобулы белка являются общими с а-микротрубочками. Центральные микротрубочки формируются от центральной втулки базального тельца. Все микротрубочки достигают своим дистальным отрицательным полюсом гомогенный матрикс аксонемы.

Соседние дуплеты соединены между собой «ручками», образованными белками динеинами. Динеины обладают АТФазной активностью, способны изменять свою стереологическую структуру. В присутствии ионов кальция динеины сокращаются с потреблением энергии. Это позволяет микротрубочкам скользить относительно друг друга. Кроме динеина в составе ресничек выделяют нидоген.

К центральным микротрубочкам от периферических дуплетов радиально направляются спицы. Центральные же микротрубочки объединены втулкой.

Свободные клетки, имеющие реснички и жгутики, способны передвигаться, а неподвижные клетки движением ресничек могут перемещать жидкость и различные частицы в полых органах. При движении ресничек и жгутиков длина их не уменьшается, поэтому неправильно называть это движение сокращением. Траектория движения ресничек очень разнообразна: маятникообразная, крючкообразная или волнообразная.

Основной белок ресничек - тубулин не способен к сокращению, укорочению, поэтому движение ресничек осуществляется за счет активности белка динеина. Незначительные смещения дуплетов микротрубочек относительно друг друга вызывают изгиб всей реснички, а если такое локальное смещение происходит вдоль жгутика, то возникает волнообразное движение.

Волнообразное движение жгутика спермия позволяет ему передвигаться с очень высокой скоростью - до 5 мм в минуту.

Волнообразное перемещение ресничек мерцательного эпителия происходит строго согласованно, но скорость движения в разных направлениях отличается. Обычно в какую-то одну сторону реснички сокращаются с большой скоростью, а в противоположном направлении их положение изменяется плавно. Это обеспечивает ток жидкости в сторону быстрого сокращения ресничек. Дефекты ресничек могут приводить к различным нарушениям, например к наследственному рецидивирующему бронхиту и хроническому синуситу, возникающим в результате нарушений функции ресничного эпителия.

Движения ресничек и жгутиков зависят от содержания внутриклеточного кальция, АТФ, ионного состава межклеточного вещества, обеспечения кислородом, глюкозой и др.

Гормоны и биологически активные вещества регулируют движения ресничек и жгутиков. Влияние того или иного гормонального фактора зависит от специализации клетки и ее рецепторного аппарата.

Реснички образуются за счет центриолей. От материнской центриоли синтезируется дочерняя центриоль, но процесс этот не заканчивается на дуплете органелл, а вновь синтезированная органелла смещается на периферию (в субмембранное пространство). Процесс может повторяться многократно. В результате под мембраной образуется множество базальных телец, которые служат основой для образования ресничек.

Базальные инвагинации (впячивания) . Это внедрения цитолеммы в цитоплазму, прилежащие к базальной мембране или иной плотной структуре. Чаще всего базальные впячивания встречаются в эпителии в базальной части клетки. В других тканях они встречаются гораздо реже, например впячивание цитолеммы на остеокласте со стороны разрушаемой (резорбцируемой) кости, так называемая гофрированная каемка. Базальные инвагинации существенно увеличивают внутреннюю (базальную) поверхность клетки.

Нередко в зонах инвагинации цитолеммы видны многочисленные митохондрии. Совокупность базальных инвагинаций и митохондрий формирует базальную исчерченность, которая хорошо заметна при большом увеличении микроскопа в дистальных и проксимальных канальцах нефронов почек. Базальная исчерченность в эпителиоцитах канальцев - это признак активных процессов трансмембранного переноса веществ; наряду с увеличением поверхности присутствует высокий уровень энергетического потребления, обеспечиваемый АТФ.

Базальные впячивания формируют сложный лабиринт каналов и ходов, взаимных переплетений. На поверхности клеточной мембраны обнаруживают много ионных каналов, рецепторов, значительную ферментативную активность.

Форму базальных впячиваний поддерживают структуры цитоскелета: промежуточные филаменты и тонкие микрофиламенты. Они соединяются с внутренней поверхностью мембраны с помощью интегральных мембранных белков, которые, в свою очередь, сцеплены друг с другом через гликокаликс. Состав промежуточных филаментов разнообразен и зависит от тканевой принадлежности клетки: в эпителии - это цитокератины, которые формируют микрофибриллы (гонофибриллы).

Миофибрилла . Это специализированная органелла мышечной ткани, основная функция которой - сокращение. При световой микроскопии миофибриллы заметны в скелетной и сердечной мышечной тканях, где они имеют вид мощных пучков волокон, расположенных строго упорядоченно и придающих симпластам или клеткам продольную и поперечную исчерченность.

Миофибрилла представляет собой систему взаимодействующих друг с другом тонких и толстых микрофиламентов (миофиламентов). Отдельные миофиламенты можно рассмотреть лишь при электронной микроскопии, но каждая миофибрилла (особенно в поперечнополосатых мышечных тканях) состоит из сотен таких нитей. Распределение миофиламентов может быть строго упорядочено в продольном направлении и придавать структуре поперечную и продольную исчерченность либо распределяться в виде сети (в гладких мышечных клетках). В последнем случае миофиламенты при световой микроскопии выявить не удается.

Сокращение в миофибрилле обеспечивается взаимодействием белков, образующих миофиламенты. Сокращение - это энергоемкий процесс, зависящий от внутриклеточного содержания ионов кальция. Сокращение может быть вызвано прямым нервным либо гуморальным влиянием. Любое из специфических возбуждений сопровождается деполяризацией мембраны с увеличением внутриклеточного содержания ионов кальция, что активизирует взаимодействие актина с миозином.

Рассмотрим строение миофибриллы на примере скелетного мышечного волокна (симпласта). В скелетном мышечном волокне миофибрилла продолжается на всю длину симпласта. Миофибриллы поперечнополосатых мышечных тканей имеют поперечную исчерченность, которая формируется при чередовании светлых (изотропных, I-дисков) и темных (анизотропных, A-дисков) дисков.

Анизотропные диски в поляризованном свете обеспечивают двойное лучепреломление, а изотропные такой способностью не обладают. Светлые диски при световой микроскопии имеют вид слабо окрашенных полос. На электронной микрофотографии видно, что светлые диски не содержат толстых нитей (миофиламентов). При очень большом увеличении светового микроскопа иногда в центре светлого I-диска заметна темная линия - телофрагма, или Z-линия (зона соединения между собой тонких нитей).

Темные диски при электронной микроскопии видны как зона параллельно лежащих толстых миофиламентов. Значительная часть темного диска содержит как толстые, так и тонкие миофиламенты. При световой и электронной микроскопиях эти участки просматриваются как наиболее темные. В центре темного А-диска под очень большим увеличением светового микроскопа иногда можно увидеть мезофрагму, или М-линию - область соединения толстых нитей. Она видна как тончайшая темная поперечная полоска. Участок A-диска, в котором отсутствуют тонкие нити, называется Н-зоной. В отличие от темного диска в целом Н-зона несколько светлее окрашена.

Соотношение длин анизотропного и изотропного дисков величина непостоянная и зависит от степени сокращения или расслабления. Так, в момент максимального сокращения длина изотропного диска минимальна, а Н-зона отсутствует. При расслаблении длина изотропного диска и Н-зоны максимальна. Размеры анизотропного диска при этом остаются относительно постоянными.

Толстые нити (миофиламенты) имеют поперечный диаметр около 10…12 нм, они образованы сложно устроенными белками - миозинами. Каждая молекула миозина содержит две тяжелые и две легкие цепи полипептидов меромиозинов, то есть миозин - это тетрамер. Он состоит из тела (хвоста), шейки и головки. Шейка и тело сформированы из двух взаимно переплетающихся полипептидных цепочек тяжелых цепей меромиозинов. Головка раздвоена и к ней присоединяются две легкие цепи меромиозина. Легкий меромиозин (миозин) способен разрушать АТФ, то есть обладает АТФазной активностью. Между шейкой и головкой миозина есть «шарнирное» соединение - место, легко изменяющее свою пространственную ориентацию или изгибающееся подобно суставу. Это происходит в момент взаимодействия головки с белками тонкого миофиламенга - актинами.

Тонкий миофиламент по строению близок к тонким микрофиламентам и состоит из двойной цепочки актинов. Они спирально закручены. В отличие от обычных актиновых нитей тонкие миофиламенты достаточно стабильные структуры и не подвергаются постоянному распаду и полимеризации. Эта устойчивость объясняется присоединением к актиновым цепочкам их стабилизирующего белка - тропомиозина (фибриллярного белка).

Кроме него в тонком миофиламенте имеются и другие белки - тропонины, составляющие комплекс из трех глобул. Эти глобулы представлены С-, I- и Т-тропонинами. С-тропонин связывается с ионами кальция, I-тропонин препятствует взаимодействию актина с головкой миозина, а Т-тропонин присоединяется к тропомиозину. В покое актины связаны с тропомиозином и тропонинами так, что актин блокирован и не может взаимодействовать с миозином.

При возбуждении мышечной клетки в матриксе цитоплазмы резко увеличивается содержание ионов кальция. Они соединяются с С-тропонином, к которому имеют высокую степень сродства. Это изменяет форму тропонинового комплекса, что сопровождается перестройкой пространственной конфигурации тропомиозина и изменением формы актиновой нити в целом. В результате молекулы актина могут взаимодействовать с головками миозина. Миозиновые головки соединяются с ближайшими актинами, но при этом происходит сокращение миозинов в зонах шарнирных соединений. В результате толстая нить слегка продвигается вперед в направлении центральной части изотропного диска.

Следующим шагом является разрушение АТФ легкими цепями меромиозина. Этой энергии хватает, чтобы разорвать связь миозина с актином. Шарнирное соединение «выпрямляется», то есть занимает исходное положение, но оказавшаяся чуть впереди головка вновь связывается с последующими молекулами актина. Вновь происходит сокращение и движение вперед. Таким образом, миозиновые головки как бы «шагают» по актиновым нитям за счет шарнирного соединения и АТФазной активности миозина.

При прекращении возбуждения в мышечном волокне содержание ионов кальция вновь снижается, С-тропонин высвобождается, это приводит к тому, что актиновый (тонкий) миофиламент вновь восстанавливает свою прежнюю структуру, и актин «закрывается» тропомиозином. В этой ситуации взаимодействие миозина с актином становится вновь невозможным, и миофибрилла занимает исходное положение - происходит расслабление мышечного волокна.

Распределение миофибрилл в скелетной мышце отличается от сердечной. В кардиомиоцитах миофибриллы занимают в основном периферию клетки, тогда как в скелетном симпласте они располагаются центрально. В гладком миоците толстых миофиламентов фактически нет, и тонкие миофиламенты взаимодействуют с молекулами минимиозина.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Фибриллярная система микроворсинок характеризуется структурным постоянством. Центральное место в ней занима-ет пучок микрофиламентов актиновой природы, идущий парал-лельно длинной оси микроворсинки (рис. 7). То, что микрофи-ламенты состоят из актина, доказано в опытах с тяжелым меромиозином, который, специфически связываясь с актином, образует на электроннограммах типичные стрельчатые струк-туры. Отдельные микрофибриллы этого пучка создают пра-вильную систему контактов с субмембранной областью гиало-плазмы и на вершине ворсинки, и на ее боковых поверхностях при помощи коротких поперечных филаментов, расположенных через определенные промежутки. В этих участках обнаружен а-актинии, а на боковых поверхностях микроворсинок присут-ствуют еще и специальные белки, по-видимому, обеспечиваю-щие связь плазматической мембраны со сложной филаментозной системой гиалоплазмы. В основании микроворсинок и в апикальной части всасывающих клеток между пучками актиновых протофибрилл располагается сеть опорных фибриллярных структур. Материал с сайта

Миозин

Важными достижениями последних лет в изучении опорно-сократимой системы микроворсинок всасывающих клеток ки-шечного эпителия млекопитающих были биохимическое выде-ление и тщательный структурный анализ второго основного со-кратимого белка — миозина. Исследование организации над-молекулярной структуры образуемых молекулами немышечного миозина фибрилл показало их существенное отличие от тол-стых миозиновых протофибрилл саркомеров поперечнополоса-тых мышечных волокон. В протофибриллах мышечных воло-кон, как хорошо известно, молекулы миозина собраны так, что их головки направлены в противоположные стороны (рис. 8, А). В фибриллах немышечного миозина нет полярного распреде-ления миозиновых молекул по длинной оси фибриллы. Здесь головки молекул ориентированы не по длинной, а по попереч-ной оси фибриллы (рис. 8, Б). Таким образом, первая половина миозиновой фибриллы на всем протяжении в длину занята молекулами миозина с одним направлением головок, во второй половине головки имеют противоположное направление.

Во всасывающих клетках кишечного эпителия подобные миозиновые фибриллы концентрируются обычно в основании микроворсинок. Следовательно, в специализированных клетках кишечного эпителия существует постоянная механохимическая актин-миозиновая система, по сложности организации вполне сопоставимая с механохимическими системами специализиро-ванных мышечных клеток.



Поделиться: